Answer:
7.1 m/s
Explanation:
First, find the time it takes for the fish to reach the water.
Given in the y direction:
Δy = 6.1 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
6.1 m = (0 m/s) t + ½ (9.8 m/s²) t²
t = 1.12 s
Next, find the velocity needed to travel 7.9 m in that time.
Given in the x direction:
Δx = 7.9 m
a = 0 m/s²
t = 1.12 s
Find: v₀
Δx = v₀ t + ½ at²
7.9 m = v₀ (1.12 s) + ½ (0 m/s²) (1.12 s)²
v₀ = 7.1 m/s
The mass of the cold water, given the data from the question is 500 g
<h3>Data obtained from the question</h3>
- Mass of warm water (Mᵥᵥ) = 200 g
- Temperature warm water (Tᵥᵥ) = 75 °C
- Temperature of cold water (T꜀) = 5 °C
- Equilibrium temperature (Tₑ) = 25 °C
- Specific heat capacity of the water = 4.184 J/gºC
- Mass of cold water (M꜀) =?
<h3>How to determine the mass of the cold water </h3>
Heat loss = Heat gain
MᵥᵥC(Tᵥᵥ – Tₑ) = M꜀C(Tₑ – T꜀)
200 × 4.184 (75 – 25) = M꜀ × 4.184(25 – 5)
41840 = M꜀ × 83.68
Divide both side 83.68
M꜀ = 41840 / 83.68
M꜀ = 500 g
Learn more about heat transfer:
brainly.com/question/6363778
#SPJ1
Acceleration due to gravity depends directly on the mass of Earth and inversely to the square of radius of Earth.
Explanation:
The forces acting on a massless object (spring, hook, string or wire, if considered massless) will always balance. Balanced forces acting on an object cause it to compress or stretch. The forces acting on a mass will never cancel.