Answer:
72 feet from the shorter pole
Step-by-step explanation:
The anchor point that minimizes the total wire length is one that divides the distance between the poles in the same proportion as the pole heights. That is, the two created triangles will be similar.
The shorter pole height as a fraction of the total pole height is ...
18/(18+24) = 3/7
so the anchor distance from the shorter pole as a fraction of the total distance between poles will be the same:
d/168 = 3/7
d = 168·(3/7) = 72
The wire should be anchored 72 feet from the 18 ft pole.
_____
<em>Comment on the problem</em>
This is equivalent to asking, "where do I place a mirror on the ground so I can see the top of the other pole by looking in the mirror from the top of one pole?" Such a question is answered by reflecting one pole across the plane of the ground and drawing a straight line from its image location to the top of the other pole. Where the line intersects the plane of the ground is where the mirror (or anchor point) should be placed. The "similar triangle" description above is essentially the same approach.
__
Alternatively, you can write an equation for the length (L) of the wire as a function of the location of the anchor point:
L = √(18²+x²) + √(24² +(168-x)²)
and then differentiate with respect to x and find the value that makes the derivative zero. That seems much more complicated and error-prone, but it gives the same answer.
Rectangle A has a larger area
#1
The uniforms are numbered 0, 1, 2, ..., 99. That's 100 numbers. Half of them are odd and half of them are even. So the probability that any one of the uniforms is odd is 1/2 just like the probability that any one uniform is even is 1/2.
(a) The numbers on the uniforms are independent of one another. That is, the number of her cross-country uniform does not in any way determine the number on her basketball uniform and vice versa. This means that we can find the probability that each is odd and multiply these together using what is called the counting principle. The probability that all are odd is:
(1/2)(1/2)(1/2)=1/8
(b) This is done the same way we did part (a). Since the probability of any one uniform being odd is the same as it being even (1/2), the answer here is the same: (1/2)(1/2)(1/2)=1/8
(c) This problem differs from that in (a) and (b). There is only one way for all three uniforms to be odd numbers: (odd, odd, odd) or all even (even, even, even). However, there are multiple ways for the uniforms to be two odd and one even. If the uniforms are listed in order: cross-country, basketball, softball we can get exactly one even in any of three ways:
even, odd, odd
odd, even, odd
odd, odd, even
The probability for any one of these possibilities is (1/2)(1/2)(1/2)=1/8 but since there are three way the probability that we get even exactly once is equal to (3)(1/8) = 3/8