Answer:
8 Hz
Explanation:
Given that
Standing wave at one end is 24 Hz
Standing wave at the other end is 32 Hz.
Then the frequency of the standing wave mode of a string having a length, l, is usually given as
f(m) = m(v/2L), where in this case, m could be 1. 2. 3. 4 etc
Also, another formula is given as
f(m) = m.f(1), where f(1) is the fundamental frequency..
Thus, we could say that
f(m+1) - f(m) = (m + 1).f(1) - m.f(1) = f(1)
And as such,
f(1) = 32 - 24
f(1) = 8 Hz
Then, the fundamental frequency needed is 8 Hz
That would be c. :) :) :)
Answer:
a career in construction industry is not an option that springs to mind for many physics graduate
The time (t) it will take for the train to reach to Grenoble is the quotient when the distance (d) is divided by the speed (s). That is,
t = d / s
Substituting the known values,
t = 480 km / 180 km/h
t = 2.667 h
Thus, it will take approximately 2.7 h to reach Grenoble. The answer is letter D.
An upright base / 6ft long