Answer: An object undergoing uniform circular motion is moving
Explanation:
Answer:
b and d
a, c, e, and f
Explanation:
Ideal gas law:
PV = nRT
Solving for temperature:
T = PV / (nR)
Therefore, temperature is directly proportional to pressure and volume, and inversely proportional to the number of molecules.
T = k PV / N
Let's say that T₀ is the temperature when P = 100 kPa, V = 4 L, and N = 6×10²³.
a) T = k PV / N = T₀
b) T = k (2P) V / N = 2T₀
c) T = k (P/2) (2V) / N = T₀
d) T = k PV / (N/2) = 2T₀
e) T = k P (V/2) / (N/2) = T₀
f) T = k (P/2) V / (N/2) = T₀
b and d have the highest temperature,
a, c, e, and f have the lowest temperature.
False, Carbon usually forms four covalent bonds.
Answer:
The potential energy of the hiker is
.
Explanation:
Given that,
Mass of the hiker, m = 61 kg
Height above sea level, h = 1900 m
We need to find the potential energy associated with a 61-kg hiker atop New Hampshire's Mount Washington. The potential energy is given by :

g is the acceleration due to gravity

So, the potential energy of the hiker is
. Hence, this is the required solution.