Answer:
15/2
Step-by-step explanation:
The dimensions and volume of the largest box formed by the 18 in. by 35 in. cardboard are;
- Width ≈ 8.89 in., length ≈ 24.89 in., height ≈ 4.55 in.
- Maximum volume of the box is approximately 1048.6 in.³
<h3>How can the dimensions and volume of the box be calculated?</h3>
The given dimensions of the cardboard are;
Width = 18 inches
Length = 35 inches
Let <em>x </em>represent the side lengths of the cut squares, we have;
Width of the box formed = 18 - 2•x
Length of the box = 35 - 2•x
Height of the box = x
Volume, <em>V</em>, of the box is therefore;
V = (18 - 2•x) × (35 - 2•x) × x = 4•x³ - 106•x² + 630•x
By differentiation, at the extreme locations, we have;

Which gives;

6•x² - 106•x + 315 = 0

Therefore;
x ≈ 4.55, or x ≈ -5.55
When x ≈ 4.55, we have;
V = 4•x³ - 106•x² + 630•x
Which gives;
V ≈ 1048.6
When x ≈ -5.55, we have;
V ≈ -7450.8
The dimensions of the box that gives the maximum volume are therefore;
- Width ≈ 18 - 2×4.55 in. = 8.89 in.
- Length of the box ≈ 35 - 2×4.55 in. = 24.89 in.
- The maximum volume of the box, <em>V </em><em> </em>≈ 1048.6 in.³
Learn more about differentiation and integration here:
brainly.com/question/13058734
#SPJ1
Answer:
Mean: 46
Median: 43
Mode: 43
Step-by-step explanation:
I hope this helped. I am sorry if you get this wrong.
This problem can be readily solved if we are familiar with the point-slope form of straight lines:
y-y0=m(x-x0) ...................................(1)
where
m=slope of line
(x0,y0) is a point through which the line passes.
We know that the line passes through A(3,-6), B(1,2)
All options have a slope of -4, so that should not be a problem. In fact, if we check the slope=(yb-ya)/(xb-xa), we do find that the slope m=-4.
So we can check which line passes through which point:
a. y+6=-4(x-3)
Rearrange to the form of equation (1) above,
y-(-6)=-4(x-3) means that line passes through A(3,-6) => ok
b. y-1=-4(x-2) means line passes through (2,1), which is neither A nor B
****** this equation is not the line passing through A & B *****
c. y=-4x+6 subtract 2 from both sides (to make the y-coordinate 2)
y-2 = -4x+4, rearrange
y-2 = -4(x-1)
which means that it passes through B(1,2), so ok
d. y-2=-4(x-1)
this is the same as the previous equation, so it passes through B(1,2),
this equation is ok.
Answer: the equation y-1=-4(x-2) does NOT pass through both A and B.