Answer:
N = 6.67 N
Explanation:
The frictional or frictional force is a force that arises from the contact of two bodies and opposes movement.
The friction is due to imperfections and roughness, mainly microscopic, that exist on the surfaces of the bodies. Upon contact, these roughnesses engage with each other making movement difficult. To minimize the effect of friction, either the surfaces are polished or lubricated, since the oil fills the imperfections, preventing them from snagging.
As the frictional force depends on the materials and the force exerted on one another, its magnitude is obtained by the following expression:
f = μ*N Formula (1)
where:
f is the friction force (N)
μ is the coefficient of friction
N is the normal force (N)
Data
f = 0.2 N : frictional force between the steel spatula and the Oiled Steel frying pan
μ = 0.03 :coefficient of kinetic friction between the two materials
Calculating of normal force
We replace data in the formula (1)
f = μ*N
0.2 = 0.03*N
N = 0.2 / 0.03
N = 6.67 N
Answer:
The Curiosity rover found that ancient Mars had the right chemistry to support living microbes. Curiosity found sulfur, nitrogen, oxygen, phosphorus and carbon-- key ingredients necessary for life--in the powder sample drilled from the "Sheepbed" mudstone in Yellowknife Bay.
Explanation:
Hope it helped
It would be a good game for you but if I get a pic I don’t want you can you come to my crib I just
Answer:
Explanation:
Given
length of rope 
velocity while running 
when the person jumps off the bank and hang on the rope then we can treat the person as pendulum with Time period T which is given by




Greatest Possible distance will be covered when person reaches the other extreme end of assumed pendulum (velocity=zero)
therefore he must hang on for 0.5 T time

Answer:
a) 2.43 m/s
b) 4.83 m/s
c) 0.023 m/s²
Explanation:
a) Both cars cover a distance of 510 m in 210 s. Since car A has no acceleration
Speed = Distance / Time

Velocity of car A is 2.43 m/s
t = Time taken = 210 seconds
u = Initial velocity
v = Final velocity
s = Displacement = 510 m
a = Acceleration
c)

Acceleration of car B is 0.023 m/s²
b)

Final velocity of car B is 4.83 m/s