The formula of the kinetic energy is:

where m is a mass of the object, v is speed of the object at the moment of time. So we have:

The answer is
2000 Joules.
A light year is the DISTANCE light travels through vacuum in 1 year.
If light is traveling through vacuum, then it's traveling at the speed of light in vacuum. If a student at home at the beginning of the trip is holding the clock, then ...
Traveling 1 light year takes 1 year.
Traveling 2 light years takes 2 years.
Traveling 3 light years takes 3 years.
Traveling 10 light years takes 10 years.
If the light is traveling through some other substance, or if the clock is traveling along with the light, then these numbers all change.
YOU cannot travel at the speed of light. We have to just leave it at that
<span>We can use Coulomb's law to find the force F acting on the proton that is released.
F = k x Q1 x Q2 / r^2
k = 9 x 10^9
Q1 is the charge on one proton which is 1.6 x 10^{-19} C
Q2 is the same charge on the other proton
r is the distance between the protons
F = (9x10^9) x (1.6 x 10^{-19} C) x (1.6 x 10^{-19} C) / (10^{-3})^2
F = 2.304 x 10^{-22} N
We can use the force to find the acceleration.
F = ma
a = F / m
a = (2.304 x 10^{-22} N) / (1.67 x 10^{-27} kg)
a = 1.38 x 10^5 m/s^2
The initial acceleration of the proton is 1.38 x 10^5 m/s^2</span>
Answer:
The answer is 2 because the formula is
wavelength=speed/frequency
Answer:
<em>The lighten travels 0.853 miles.</em>
Explanation:
Sound: Sound is a form of wave which is conveyed through an elastic medium from a vibrating body to a listener.
v = 2x/t .......................................... Equation 1
making x the subject of the equation
x = vt/2........................................ Equation 2
Where v = velocity of sound in air, x = distance traveled by the sound, t = time
Given: v = 344 m/s t = 8 s
Substituting into equation 2
x = 344(8)/2
x = 1376 m.
x = 1376×0.00062 miles = 0.853 miles
<em>Thus the lighten travels 0.853 miles.</em>