Answer:
50 N
Explanation:
Let the force in the horizontal rope be F₁ and the force in the diagonal rope be F₂:
The total force in the horizontal and vertical directions must be zero, since the object is at rest and is not accelerating.
The horizontal component of the forces:
F₁ + F₂ = -40N + F₂ = 0
F₂ = 40N
The vertical component of the forces:
F₁ + F₂ - mg = 0 + F₂ - mg = 0
F₂ = mg
If I assume the gravitational constant g = 10 m/s²:
F₂ = (3 kg) * (10 m/s²) = 30N
Adding the horizontal and vertical components of the force F₂:
F₂ = √((40N)² + (30N)²) = 50N
Answer:
New moment of inertia will be
Explanation:
It is given initially angular velocity 
Moment of inertia 
Angular momentum is equal to 
Now angular velocity is decreases to 
As we know that angular momentum is conserved
So 

So new moment of inertia will be 
Frequency= velocity of light/wave length
Fr= 3×10^8/510×10^-9
Frequwency=5.88×10^14 Hz
Answer:
Potential Energy to Kenetic Energy
Explanation:
When holding a ball in the air, the ball has potential energy. Once you drop the ball, the ball gains Kenetic Energy
Electric Forces. ... Just like objects that have mass exert gravitational forces on each other, objects that are charged will also exert electric forces on each other. The electric force is directly proportional to the charge of the two objects and inversely proportional to the distance between them squared.