Assume that the small-massed particle is
and the heavier mass particle is
.
Now, by momentum conservation and energy conservation:


Now, there are 2 solutions but, one of them is useless to this question's main point so I excluded that point. Ask me in the comments if you want the excluded solution too.

So now, we see that
and
. So therefore, the smaller mass recoils out.
Hope this helps you!
Bye!
Where is the rest .........
"The equation can be used to calculate the power absorbed by any surface" statement concerning the Stefan-Boltzmann equation is correct.
Answer: Option A
<u>Explanation:</u>
According to Stefan Boltzmann equation, the power radiated by black body radiation source is directly proportionate to the fourth power of temperature of the source. So the radiation transferred is absorbed by another surface and that absorbed power will also be equal to the fourth power of the temperature. So the equation describes the relation of net radiation loss with the change in temperature from hotter temperature to cooler temperature surface.

So this law is application for calculating power absorbed by any surface.
The wires that will have the least resistance is :
C. A short thick wire
in order to get the least resistence, you need the wire to be the lowest in length and the highest in Area
hope this helps