Answer:
0.31
Explanation:
horizontal force, F = 750 N
mass of crate, m = 250 kg
g = 9.8 m/s^2
The friction force becomes applied force = 750 N
According to the laws of friction,
Friction force = μ x Normal reaction of the surface
here, μ be the coefficient of friction
750 = μ x m g
750 = μ x 250 x 9.8
μ = 0.31
Thus, the coefficient of static friction is 0.31.
Bohr, he invented the Bohr model which is the basis for the beginning of quantum physics.
I believe the correct gravity on the moon is 1/6 of Earth.
Take note there is a difference between 1 6 and 1/6.
HOWEVER, we should realize that the trick here is that the
question asks about the MASS of the astronaut and not his weight. Mass is an
inherent property of an object, it is unaffected by external factors such as
gravity. What will change as the astronaut moves from Earth to the moon is his
weight, which has the formula: weight = mass times gravity.
<span>Therefore if he has a mass of 50 kg on Earth, then he will
also have a mass of 50 kg on moon.</span>
Answer: Force F will be one-sixteenth of the new force when the charges are doubled and distance halved
Explanation:
Let the charges be q1 and q2 and the distance between the charges be 'd'
Mathematical representation of coulombs law will be;
F1=kq1q2/d²...(1)
Where k is the electrostatic constant.
If q1 and q2 is doubled and the distance halved, we will have;
F2 = k(2q1)(2q2)/(d/2)²
F2 = 4kq1q2/(d²/4)
F2 = 16kq1q2/d²...(2)
Dividing equation 1 by 2
F1/F2 = kq1q2/d² ÷ 16kq1q2/d²
F1/F2 = kq1q2/d² × d²/16kq1q2
F1/F2 = 1/16
F1 = 1/16F2
This shows that the force F will be one-sixteenth of the new force when the charges are doubled and distance halved