Answer:
Explanation:
Mechanical Advantage is the ratio of the distance of the input load (Li)from the pivot to the output load applied to the pivot(Lo)
MA = Li/Le
Given;
Li = 45cm
Lo = 1.8cm
MA = 45/1.8
MA = 25
Hence the mechanical advantage is 25
Also MA is expressed in terms of the force ratio which is the ratio of the Load to the effort applied.
MA = Load/Effort
Given
Load = 1250N
MA = 25
Effort = ?
Substitute
25 = 1250/Effort
Effort = 1250/25
Effort = 50N
Hence the minimum force exerted on the load is 50N
The bouncing person because the bounce helped him survive
This problem is a piece o' cake, IF you know the formulas for both kinetic energy and momentum. So here they are:
Kinetic energy = (1/2) · (mass) · (speed²)
Momentum = (mass) · (speed)
So, now ... We know that
==> mass = 15 kg, and
==> kinetic energy = 30 Joules
Take those pieces of info and pluggum into the formula for kinetic energy:
Kinetic energy = (1/2) · (mass) · (speed²)
30 Joules = (1/2) · (15 kg) · (speed²)
60 Joules = (15 kg) · (speed²)
4 m²/s² = speed²
Speed = 2 m/s
THAT's all you need ! Now you can find momentum:
Momentum = (mass) · (speed)
Momentum = (15 kg) · (2 m/s)
<em>Momentum = 30 kg·m/s</em>
<em>(Notice that in this problem, although their units are different, the magnitude of the KE is equal to the magnitude of the momentum. When I saw this, I wondered whether that's always true. So I did a little more work, and I found out that it isn't ... it's a coincidence that's true for this problem and some others, but it's usually not true.)</em>
Answer:
r = 4.44 m
Explanation:
For this exercise we use the Archimedes principle, which states that the buoyant force is equal to the weight of the dislodged fluid
B = ρ g V
Now let's use Newton's equilibrium relationship
B - W = 0
B = W
The weight of the system is the weight of the man and his accessories (W₁) plus the material weight of the ball (W)
σ = W / A
W = σ A
The area of a sphere is
A = 4π r²
W = W₁ + σ 4π r²
The volume of a sphere is
V = 4/3 π r³
Let's replace
ρ g 4/3 π r³ = W₁ + σ 4π r²
If we use the ideal gas equation
P V = n RT
P = ρ RT
ρ = P / RT
P / RT g 4/3 π r³ - σ 4 π r² = W₁
r² 4π (P/3RT r - σ) = W₁
Let's replace the values
r² 4π (1.01 10⁵ / (3 8.314 (70 + 273)) r - 0.060) = 13000
r² (11.81 r -0.060) = 13000 / 4pi
r² (11.81 r - 0.060) = 1034.51
As the independent term is very small we can despise it, to find the solution
r = 4.44 m