Answer:
202.8m
Explanation:
Given that A pirate fires his cannon parallel to the water but 3.5 m above the water. The cannonball leaves the cannon with a velocity of 120 m/s. He misses his target and the cannonball splashes into the briny deep.
First calculate the total time travelled by using the second equation of motion
h = Ut + 1/2gt^2
Let assume that u = 0
And h = 3.5
Substitute all the parameters into the formula
3.5 = 1/2 × 9.8 × t^2
3.5 = 4.9t^2
t^2 = 3.5/4.9
t^2 = 0.7
t = 0.845s
To know how far the cannonball travel, let's use the equation
S = UT + 1/2at^2
But acceleration a = 0
T = 2t
T = 1.69s
S = 120 × 1.69
S = 202.834 m
Therefore, the distance travelled by the cannon ball is approximately 202.8m.
Answer:
A. fuel mileage and longevity
Explanation:
For a person purchasing a car, car longevity is one of the main concern. They are also interested in many things such as maximum mileage and service life.
By properly monitoring and assessing few measures one can maintain the efficiency and longevity of the car. One such thing is by monitoring the liquid levels of the car. Certain liquids like the coolant or radiator water level should be well maintain in proper level in order to run the car economically.
Thus by doing this, one can optimize the car's longevity and the fuel mileage.
Hence the correct option is (A).
D. Decreasing its temperature
Explanation:
Decreasing the temperature of the carbon dioxide gas to be dissolved in the carbonated drink will most likely increase the solubility of the gas in the drink.
Temperature has considerable effects on the solubility of gases in liquids.
- Dissolution involves the surrounding of ions by water molecules, in this case, the carbon dioxide gas is to be surrounded by the liquid beverage medium.
- Increasing pressure increases the rate at which gases are soluble. At high pressure, the gases are brought more in contact with the liquid medium.
- Decreasing temperature aids gas solubility.
- If the temperature of gases are increased, they will not want to stay in solution as they gain a high amount of kinetic energy.
- Therefore, it will increase their randomness and the urge to leave the solution.
- Decrease in temperature and increase in pressure makes gas solubility to be fast.
Learn more:
Rate of chemical reactions brainly.com/question/6281756
#learnwithBrainly
Unfortunately, the given statements are missing from the problem. However, we can still determine the relationship between the electric force between two objects and the distance between them. The formula for the electric force is given below:
F = (k*Q1*Q2)/d^2
k is a constant, while Q1 and Q2 are the respective charges of the objects. F is force, while d is distance.
As seen in the formula, we can see that the electric force F is inversely proportional to the square of the distance between the two objects.
Answer:
Current = 132.35 A
The motor needs to draw 132.35 Amperes current from the battery.
Explanation:
The formula of electric power is given as follows:
Power = (Voltage)(Current)
Current = Power/Voltage
In this question, we have:
Power = 45 KW = 45000 W
Voltage of Battery Pack = 340 V
Current needed to be drawn = ?
Therefore,
Current = 45000 W/340 V
<u>Current = 132.35 A</u>
<u>The motor needs to draw 132.35 Amperes current from the battery.</u>