The rate of increase of NH3 is 0.22M/s.
<h3>What is the balanced equation of the reaction?</h3>
The balanced equation of the reaction is given below:
- N2(g) + 3 H2(g) → 2 NH3(g)
The rate of decrease of N2 is half the rate of increase of NH3.
Rate of decrease of N2 = -0.11 M/s
Rate of increase of NH3 = 2 × +0.11 M/s = 0.22M/s.
In conclusion, the rate of formation of products is dependent on the rate of disappearance of reactants.
Learn more about rate of reaction at: brainly.com/question/25724512
#SPJ1
The writers of the Articles of Confederation wanted to preserve the states' sovereignty.
Answer is: K <span>be for the reaction at 375 K is 326.
</span>Chemical reaction: N₂(g) + 3H₂(g) ⇌ 2NH₃(g); ΔH = -92,22 kJ/mol.
T₁<span><span> = 298 K
</span>T</span>₂<span><span> = 375 K
</span><span>Δ<span>H = -92,22 kJ/mol = -92220 J/mol.
R = 8,314 J/K</span></span></span>·mol.<span>
K</span>₁ = 6,8·10⁵.<span>
K</span>₂ = ?The van’t Hoff equation: ln(K₂/K₁) = -ΔH/R(1/T₂ - 1/T₁).
ln(K₂/6,8·10⁵) = 92220 J/mol / 8,314 J/K·mol (1/375K - 1/298K).
ln(K₂/6,8·10⁵) = 11092,13 · (0,00266 - 0,00335).
ln(K₂/6,8·10⁵) = -7,64.
K₂/680000= 0,00048
K₂ = 326,4.
Answer: hydrogen cleaves from HCl by donating it's only electron to form a radical and chloride ion. Ammonia share it's lone pair of electron with hydrogen to form ammonium ion
Explanation:
The cnidarias life cycle has 2 life cycles polyp and medusa