Yes fishnet cudhejeiei. Jen did she
Answer:
(a) 348.4 m
(b) 256.7 m/s
(c) 127.2 m/s^2
Explanation:

(a) at t = 4 s
x = 2.3 x 4 + 5.3 x 4 x 4 x 4
x = 348.4 m
(b) The derivative of displacement function gives the value of instantaneous velocity.
So, v = dx / dt = 2.3 + 5.3 x 3 x t^2
v = 2.3 + 15.9 t^2
Put t = 4 s
So, v = 2.3 + 15.9 x 4 x 4
v = 256.7 m/s
(c) The derivative of velocity function with respect to time gives the value of instantaneous acceleration.
So, a = dv / dt = 5.3 x 3 x 2 x t
a = 31.8 t
Put t = 4 s
a = 31.8 x 4 = 127.2 m/s^2
Answer:
a ) 2.368 rad/s
b) 3.617 rad/s
Explanation:
the minimum angular velocity that Prof. Stefanovic needs to spin the bucket for the water not to fall out can be determined by applying force equation in a circular path
i.e
------ equation (1)
where;


Also

since; that is the initial minimum angular velocity to keep the water in the bucket
Now; we can rewrite our equation as :

So; Given that:
The rope that is attached to the bucket is lm long and his arm is 75 cm long.
we have our radius r = 1 m + 75 cm
= ( 1 + 0.75 ) m
= 1.75 m
g = acceleration due to gravity = 9.81 m/s²
Replacing our values into equation (2) ; we have:

b) if he detaches the rope and spins the bucket by holding it with his hand ; then the radius = 0.75 m
∴

Potential is the first blank and kinetic is the second blank.
This should be correct
A car acting as an object in front of a biconvex lens between F and 2 F on the object side of the lens. There is a light ray parallel to the principal axis that is bent through F on the image side of the lens. There is a ray straight through the center of the lens. The rays intersect below the x axis further than 2 F away from the lens and farther from the principal axis than the object is tall.
<u> The image produced by the lens is (b) inverted and real</u>
Explanation:
A real image occurs where the rays converge.
Real images can be produced both by the concave mirrors or converging lenses, but the condition is that the object of consideration is always placed far away from the mirror or the lens than the focal point, and thus the real image produced is inverted.
A car acting as an object in front of a biconvex lens between F and 2 F on the object side of the lens. There is a light ray parallel to the principal axis that is bent through F on the image side of the lens. There is a ray straight through the center of the lens. The rays intersect below the x axis further than 2 F away from the lens and farther from the principal axis than the object is tall.
<u> The image produced by the lens is (b) inverted and real</u>