Answer:
301.48 J/s
Explanation:
We are given;
Temperature of the sky dropping to −40∘C: T_o = -40°C = -40 + 273 = 233 K
Temperature of your skin and clothes: T = 30°C = 30 + 273 = 303 K
Body surface area of human body is around 2 m². But here only half of the body is facing the sky, Thus Area is: A = 2/2 = 1 m²
To solve this, we will use the equation for thermal heat transfer known as the Stefan bolt Mann equation.
ΔQ/Δt = εσA(T⁴ - (T_o)⁴)
Where;
ΔQ/Δt is the rate at which you body loses energy by radiation
ε is the emissivity of the human body with a value of 0.97
σ is Stefan boltzmann constant with a value of 5.67 X 10^(-8) W/m².K⁴
Thus;
ΔQ/Δt = 0.97 × 5.67 X 10^(-8) × 1(303⁴ - 233⁴)
ΔQ/Δt = 301.48 J/s
During the first collision, the vehicle comes to an abrupt stop.
Answer:
D. 21 ml
Explanation:
Since, the cylinder is marked and graduated in the intervals if 1 ml. Therefore, the values between two consecutive ml, such as between 30 ml and 31 ml can not be determined. Because, we do not have any scale in between the ml. So, the least count of this instrument is 1 ml. This graduated cylinder can give the answers to zero decimal places, accurately. And it can not determine any decimal value due to its graduating or the marking limitation. So, all the options given, contain a decimal value, except for the option D. In option D there is no decimal value, hence it is a correct answer.
D. <u>21 ml</u>
D because it has the lowest wavelength, meaning the wave is the longest. Its crest are more spaced out creating lower energy. The smaller distance between the crests equals the higher the sound. Creating higher energy.
I am 95% sure this is right. Very sorry if it isn't.
Hope it helps. ;3
This doesn’t makes sense at all yes the sheer is ,383