According to Newton's second law, the force applied to an object is equal to the product between the mass of the object and its acceleration:

where F is the magnitude of the force, m is the mass of the object and a its acceleration.
In this problem, the object is the insect, with mass

. The acceleration of the insect is

, therefore we can calculate the force exerted by the car on the insect:

How do we find the force exerted by the insect on the car?
According to Newton's third law (known as action-reaction law), when an object A exerts a force on an object B, object B also exerts a force equal and opposite on object A. Therefore, the force exerted by the insect on the car is equal to the force exerted by the car on the object, so it is 0.01 N.
Given,
Current (I) = 0.50A
Voltage (V) = 120 volts
Resistance (R) =?
We know that:-
Voltage (V) = Current (I) x Resistance (R)
→Resistance (R) = Voltage (V) / Current (I)
= 120/0.50
= 24Ω
∴ Resistance (R) = 24Ω
Answer:
a) 
b)
parallel to the earth surface.
- In this case according to the Fleming's left hand rule the direction of movement of bee must be in a direction parallel to the earth surface and perpendicular to the electric field at the same time.
Explanation:
Given:
mass of the bee, 
charge acquired by the bee, 
a.
Electrical field near the earth surface, 
Now the electric force on the bee:
we know:




The weight of the bee:



Therefore the ratio :


b.
The condition for the bee to hang is its weight must get balanced by the electric force acing equally in the opposite direction.
So,



parallel to the earth surface.
- In this case according to the Fleming's left hand rule the direction of movement of bee must be in a direction parallel to the earth surface and perpendicular to the electric field at the same time.
During an exothermic reaction; light and heat are released into the environment.
An exothermic reaction is one in which heat is released to the environment. This heat can be physically observed sometimes like in an a combustion reaction.
In an exothermic reaction, the enthalpy of the reactants is greater than the enthalpy of the products.
This heat lost is sometimes felt as the hotness of the vessel in which the reaction has taken place.
In conclusion, light and heat are released into the environment in an exothermic reaction.
Learn more: brainly.com/question/4345448
Both a molten metallic core and reasonably fast rotation.