Answer:
- as written, -2
- with denominator parentheses, 0
- with f(x)=ln(x) and denominator parentheses, -1/2
Step-by-step explanation:
The problem as stated asks for the limit as x approaches 2 of (0/x) -2.
As written, the limit is (0/2) -2 = -2.
<u>Explanation</u>: f(x) is a constant, so the numerator is 0. The ratio 0/x -2 is defined as -2 everywhere except x=0. So, the value at x=2 is 0/2 -2 = -2.
__
If you mean (f(2) -f(x))/(x -2), that limit is the limit of 0/(x-2) = 0 as x approaches 2.
<u>Explanation</u>: f(x) is a constant, so the numerator is 0. The ratio 0/(x-2) is zero everywhere except at x=2. The left limit and right limit are both 0 as x approaches 2. Since these limits agree, the limit is said to be 0.
__
If you mean f(x) = ln(x) and you want the limit of (f(2) -f(x))/(x -2), that value will be -1/2.
<u>Explanation</u>: The value of the ratio is 0/0 at x=2, so we can find the limit using L'Hôpital's rule. Differentiating numerator and denominator, we have ...
lim = (-1/x)/(1)
The value is -1/2 at x=2.
50 sqft = 45 min
495 sqft = x min
495/50 is 9.9. So we know we multiplied 50 by 9.9 to change it to 495.
Do the same on the other side. 45 x 9.9 = 445.5.
It will take him 445.5 minutes, or 7.425 hours
Answer:
16 cm²
Step-by-step explanation:
I’ll see what I can do just give me a few minutes