Answer is: pH <span>of a 0,01 M solution is 2.
c(HNO</span>₃) = 0,01 M = 0,01 mol/L.
pH = -log(c(HNO₃).
pH = -log(0,01 mol/L).
pH = 2.
pH<span> is a numeric scale used to specify the </span>acidity<span> or </span>basicity<span> of an </span>aqueous solution<span>. If pH is less than seven, than solution is acidic and if pH is greater seven, solution is basic, if pH is equal seven, solution is neutral.</span>
Let's use the example: H2O ---> H2 + O2
We find how many elements of a product are on one side and how many elements on the other side.
Reactant: H=2 O=1
Product: H=2 O=2
We need to make the same amount of hydrogen and oxegyn atoms on each side, regardless of how high the numbers are, and we do this by adding coefficients to the compounds.
Reactant: H=4 O=2
Product : H=4 O=2
2 H2O---> 2 H2 + O2
Answer:
Option A
Explanation:
An intensive property is a bulk property, meaning that it is a local physical property of a system that does not depend on the system size or the amount of material in the system. Examples of intensive properties include temperature, T; refractive index, n; density, ρ; and hardness of an object,specific heat, η.
Physical properties can be observed or measured without changing the composition of matter. Physical properties are used to observe and describe matter. Physical properties include: appearance, texture, color, odor, melting point, boiling point, density, solubility, polarity, specific heat and many others.
Answer:
310.53 g of Cu.
Explanation:
The balanced equation for the reaction is given below:
CuSO₄ + Zn —> ZnSO₄ + Cu
Next, we shall determine the mass of CuSO₄ that reacted and the mass Cu produced from the balanced equation. This can be obtained as follow:
Molar mass of CuSO₄ = 63.5 + 32 + (16×4)
= 63.5 + 32 + 64
= 159.5 g/mol
Mass of CuSO₄ from the balanced equation = 1 × 159.5 = 159.5 g
Molar mass of Cu = 63.5 g/mol
Mass of Cu from the balanced equation = 1 × 63.5 = 63.5 g
Summary:
From the balanced equation above,
159.5 g of CuSO₄ reacted to produce 63.5 g of Cu.
Finally, we shall determine the mass of Cu produced by the reaction of 780 g of CuSO₄. This can be obtained as follow:
From the balanced equation above,
159.5 g of CuSO₄ reacted to produce 63.5 g of Cu.
Therefore, 780 g of CuSO₄ will react to produce = (780 × 63.5)/159.5 = 310.53 g of Cu.
Thus, 310.53 g of Cu were obtained from the reaction.