It condenses into liquid water.
Answer:
Option A
Explanation:
Mechanical waves requires some medium to travel through. They travel faster in the dense medium as compared to a free medium.
The speed of a mechanical wave is fastest in the solid medium and the slowest in the gaseous medium. Hence, as the wave traverses from gaseous medium to the solid medium, its speed increases.
Thus, option A is correct
Answer:
v₁ = 3.5 m/s
v₂ = 6.4 m/s
Explanation:
We have the following data:
m₁ = mass of trailing car = 400 kg
m₂ = mass of leading car = 400 kg
u₁ = initial speed of trailing car = 6.4 m/s
u₂ = initial speed of leading car = 3.5 m/s
v₁ = final speed of trailing car = ?
v₂ = final speed of leading car = ?
The final speed of the leading car is given by the following formula:

<u>v₂ = 6.4 m/s</u>
The final speed of the leading car is given by the following formula:

<u>v₁ = 3.5 m/s</u>
Answer:

Explanation:
We know that charge on electron

r= 2 nm
We know that force between two charge given

Now by putting the value


We know that mass of electron
The mass of electron

F= m a
a= Acceleration of electron
a= F/m


initial velocity given that zero ,u=0


Answer:
2271.16N/C upward
Explanation:
The diagram well illustrate all the forces acting on the mass. The weight is acting downward and the force is acting upward in other to balance the weight.since the question says it is motionless, then indeed the forces are balanced.
First we determine the downward weight using

Hence for a mass of 3.82g 0r 0.00382kg we have the weight to be


To calculate the electric field,

Since the charge on the mass is negative, in order to generate upward force, there must be a like charge below it that is repelling it, Hebce we can conclude that the electric field lines are upward.
Hence the magnitude of the electric force is 2271.16N/C and the direction is upward