Answer:
T/√8
Explanation:
From Kepler's law, T² ∝ R³ where T = period of planet and R = radius of planet.
For planet A, period = T and radius = 2R.
For planet B, period = T' and radius = R.
So, T²/R³ = k
So, T²/(2R)³ = T'²/R³
T'² = T²R³/(2R)³
T'² = T²/8
T' = T/√8
So, the number of hours it takes Planet B to complete one revolution around the star is T/√8
Answer:
a galaxy observed at a distance of 5 billion light-years
Answer:
answer is B
Explanation:
The table below shows the wavelengths for some electromagnetic waves
<span>orbital velocities to their mean distances from the Sun.</span>
Answer:
The positive displacement from the midpoint of its motion at the speed equal one half of its maximum speed is 3.56 cm.
Explanation:
Maximum speed is :
v (max) = Aω
Speed v at any displacement y is given by
=
(
-
) ........................................................ i
And,
v =
v (max)
or, 2 × v = Aω .................................................... ii
Eliminating ω from equations i and ii,
=
(
-
)
or,
= (
)
=(
) 
or, y = 3.56 cm.