The answer is: [C]: "4" .
___________________________________________________
Note: To balance this equation, the coefficient, "4", should be placed in front of the PCl₃ ; and the coefficient, "6", should be placed in front of the Cl₂ .
________________________________________________________
The balanced equation is:
__________________________________________________
P₄ (s) + 6 Cl₂ (g) <span>→ 4 </span>PCl₃ (l) .
______________________________________________________
Part a:
= 56
= 60
= 63
The quartiles are found by finding the medium of the data, and then the mediums of the two different data sets on either side of the medium. The
is the overall medium,
is the medium of the first half, and
is the medium of the second half.
-> How is the medium found? When finding the medium we put the values in order least to greatest and pick the middle value.
[] See attached
Part b:
The range is 7.
The interquartile range is the range of numbers between
and
. In other words, it is 50% of the data, directly in the middle.
This becomes 63 - 56 = 7
Part c:
79 is an outlier.
It is an outlier because it is 1.5 above or below (in this case, above) the interquartile range.
-> 63 + (7 +
) ≤ 79
-> 63 + 10.5 ≤ 79
-> 73.5 ≤ 79
Have a nice day!
I hope this is what you are looking for, but if not - comment! I will edit and update my answer accordingly.
- Heather
Answer:
The difference in the decibel corresponses to a constant difference in the loudness perceived.
The refore the sound intensity from the orchestra is like 100 times that of the violin.
Explanation:
Answer:
a= 23.65 ft/s²
Explanation:
given
r= 14.34m
ω=3.65rad/s
Ф=Ф₀ + ωt
t = Ф - Ф₀/ω
= (98-0)×
/3.65
98°= 1.71042 rad
1.7104/3.65
t= 0.47 s
r₁(not given)
assuming r₁ =20 in
r₁ = r₀ + ut(uniform motion)
u = r₁ - r₀/t
r₀ = 14.34 in= 1.195 ft
r₁ = 20 in = 1.67 ft
= (1.667 - 1.195)/0.47
0.472/0.47
u= 1.00ft/s
acceleration at collar p
a=rω²
= 1.67 × 3.65²
a = 22.25ft/s²
acceleration of collar p related to the rod = 0
coriolis acceleration = 2ωu
= 2× 3.65×1 = 7.3 ft/s²
acceleration of collar p
= 22.5j + 0 + 7.3i
√(22.5² + 7.3²)
the magnitude of the acceleration of the collar P just as it reaches B in ft/s²
a= 23.65 ft/s²