1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VLD [36.1K]
3 years ago
8

If the mass of a planet is 0.231 mE and its radius is 0.528 rE, estimate the gravitational field g at the surface of the planet.

The gravitational acceleration on Earth is 9.8 m/s 2 and the value of the universal gravitational constant is 6.67259 × 10−11 N · m2 /kg2 . Answer in units of m/s 2 .
Physics
1 answer:
crimeas [40]3 years ago
3 0

Answer:

8.1 m/s^2

Explanation:

The strength of the gravitational field at the surface of a planet is given by

g=\frac{GM}{R^2} (1)

where

G is the gravitational constant

M is the mass of the planet

R is the radius of the planet

For the Earth:

g_E = \frac{GM_E}{R_E^2}=9.8 m/s^2

For the unknown planet,

M_X = 0.231 M_E\\R_X = 0.528 R_E

Substituting into the eq.(1), we find the gravitational acceleration of planet X relative to that of the Earth:

g_X = \frac{GM_X}{R_X^2}=\frac{G(0.231M_E)}{(0.528R_E)^2}=\frac{0.231}{0.528^2}(\frac{GM_E}{R_E^2})=0.829 g_E

And substituting g = 9.8 m/s^2,

g_X = 0.829(9.8)=8.1 m/s^2

You might be interested in
Consider two massless springs connected in series. Spring 1 has a spring constant k1, and spring 2 has a spring constant k2. A c
Andru [333]

Answer:

a. k = (1/k₁ + 1/k₂)⁻¹ b. k = (1/k₁ + 1/k₂ + 1/k₃)⁻¹

Explanation:

Since only one force F acts, the force on spring with spring constant k₁ is F = k₁x₁ where x₁ is its extension

the force on spring with spring constant k₂ is F = k₂x₂ where x₁ is its extension

Let F = kx be the force on the equivalent spring with spring constant k and extension x.

The total extension , x = x₁ + x₂

x = F/k = F/k₁ + F/k₂

1/k = 1/k₁ + 1/k₂

k = (1/k₁ + 1/k₂)⁻¹

B

The force on spring with spring constant k₃ is F = k₃x₃ where x₃ is its extension

Let F = kx be the force on the equivalent spring with spring constant k and extension x.

The total extension , x = x₁ + x₂ + x₃

x = F/k = F/k₁ + F/k₂ + F/k₃

1/k = 1/k₁ + 1/k₂ + 1/k₃

k = (1/k₁ + 1/k₂ + 1/k₃)⁻¹

8 0
3 years ago
Read 2 more answers
Roman citizenship guaranteed Paul:
deff fn [24]
<span>protection from injustices</span>
3 0
4 years ago
Read 2 more answers
A light beam is directed parallel to the axis of a hollow cylindrical tube. When the tube contains only air, the light takes 8.7
monitta

Answer:

Explanation:

velocity of light in a medium of refractive index V = V₀ / μ

V₀  is velocity of light in air and μ is refractive index of light.

time to travel in tube with air =  length of tube / velocity of light

8.72 ns = L / V₀  L is length of tube .

time to travel in tube with jelly =  length of tube / velocity of light

8.72+ 1.82  = L / V  L is length of tube .

10.54 ns = L / V

dividing the equations

10.54 / 8.72 = V₀  / V

10.54 / 8.72 =   μ

1.21 =  μ

refractive index of jelly = 1.21 .

3 0
3 years ago
g initial angular velocity of 39.1 rad/s. It starts to slow down uniformly and comes to rest, making 76.8 revolutions during the
MrRa [10]

Answer:

Approximately -1.58\; \rm rad \cdot s^{-2}.

Explanation:

This question suggests that the rotation of this object slows down "uniformly". Therefore, the angular acceleration of this object should be constant and smaller than zero.

This question does not provide any information about the time required for the rotation of this object to come to a stop. In linear motions with a constant acceleration, there's an SUVAT equation that does not involve time:

v^2 - u^2 = 2\, a\, x,

where

  • v is the final velocity of the moving object,
  • u is the initial velocity of the moving object,
  • a is the (linear) acceleration of the moving object, and
  • x is the (linear) displacement of the object while its velocity changed from u to v.

The angular analogue of that equation will be:

(\omega(\text{final}))^2 - (\omega(\text{initial}))^2 = 2\, \alpha\, \theta, where

  • \omega(\text{final}) and \omega(\text{initial}) are the initial and final angular velocity of the rotating object,
  • \alpha is the angular acceleration of the moving object, and
  • \theta is the angular displacement of the object while its angular velocity changed from \omega(\text{initial}) to \omega(\text{final}).

For this object:

  • \omega(\text{final}) = 0\; \rm rad\cdot s^{-1}, whereas
  • \omega(\text{initial}) = 39.1\; \rm rad\cdot s^{-1}.

The question is asking for an angular acceleration with the unit \rm rad \cdot s^{-1}. However, the angular displacement from the question is described with the number of revolutions. Convert that to radians:

\begin{aligned}\theta &= 76.8\; \rm \text{revolution} \\ &= 76.8\;\text{revolution} \times 2\pi\; \rm rad \cdot \text{revolution}^{-1} \\ &= 153.6\pi\; \rm rad\end{aligned}.

Rearrange the equation (\omega(\text{final}))^2 - (\omega(\text{initial}))^2 = 2\, \alpha\, \theta and solve for \alpha:

\begin{aligned}\alpha &= \frac{(\omega(\text{final}))^2 - (\omega(\text{initial}))^2}{2\, \theta} \\ &= \frac{-\left(39.1\; \rm rad \cdot s^{-1}\right)^2}{2\times 153.6\pi\; \rm rad} \approx -1.58\; \rm rad \cdot s^{-1}\end{aligned}.

7 0
3 years ago
Even if u dont know the right answer can someone just give me an answer that looks right
Licemer1 [7]

Answer:

The answer is elastic

Explanation:

hope this helps!

3 0
3 years ago
Other questions:
  • Calculate the force of gravity between a 2.50 kg newborn baby and a 80.0 kg doctor standing 0.250 m away. G = 6.67 E -11 N*m2/kg
    12·1 answer
  • Bryan Allen pedaled a human-powered aircraft across the English Channel from the cliffs of Dover to Cap Gris-Nez on June 12, 197
    5·1 answer
  • If you stand at the edge of a cliff that is 75 m high and throw a rock directly up into the air with a velocity of 20 m/s, at wh
    7·2 answers
  • How do I find magnitude of acceleration?
    7·1 answer
  • slader A steel bar is 150 mm square and has a hot-rolled finish. It will be used in a fully reversed bending application. Sut fo
    7·1 answer
  • "A short-wave radio antenna is supported by two guy wires, 150 ft and 170 ft long. Each wire is attached to the top of the anten
    5·1 answer
  • You overhear two students discussing the topic of Doppler shift.
    12·1 answer
  • What is the difference between prejudice and discrimination?
    5·2 answers
  • Which statements about Earth’s atmosphere are correct? Check all that apply. helpppp
    14·2 answers
  • if the train is accelerating and the bisicle is traveling at a constant velocity, what do you know about their speed?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!