Answer:
The answer is 12.4
Step-by-step explanation:
Because it is this way.
Answer:

Step-by-step explanation:
Both expressions are examples of the <em>distributive property</em>, which basically says "if I have <em>this </em>many groups of some size and <em>that</em> many groups of the same size, I've got <em>this </em>+ <em>that</em> groups of that size altogether."
To give an example, if I've got <em>3 groups of 5 </em>and <em>2 groups of 5</em>, I've got 3 + 2 = <em>5 groups of 5 </em>in total. I've attached a visual from Math with Bad Drawings to illustrate this idea.
Mathematically, we'd capture that last example with the equation
. We can also read that in reverse: 3 + 2 groups of 5 is the same as adding together 3 groups of 5 and 2 groups of 5; both directions get us 8 groups of 5. We can use this fact to rewrite the first expression like this:
.
This idea extends to subtraction too: If we have 3 groups of 4 and we take away 1 group of 4, we'd expect to be left with 3 - 1 = 2 groups of 4, or in symbols:
. When we start with two numbers like 15 and 10, our first question should be if we can split them up into groups of the same size. Obviously, you could make 15 groups of 1 and 10 groups of 1, but 15 is also the same as <em>3 groups of 5</em> and 10 is the same as <em>2 groups of 5</em>. Using the distributive property, we could write this as
, so we can say that
.
Answer:
1.
31, 37, 43, 49, 55
2.
for nth number the value is 31+6(n-1)
3.
24th number, 169-31=138 and 138/6=23
When using the the slope formula the equation would be
-4-5= -9
4- -2=6
You divide and u get 1.5 which is also known as 1 and 1/2
Answer:
The standard deviation for the income of super shoppers is 76.12.
Step-by-step explanation:
The formula to compute the standard deviation for the grouped data probability distribution is:
![\sigma=\sqrt{\sum [(x-\mu)^{2}\cdot P(x)]}](https://tex.z-dn.net/?f=%5Csigma%3D%5Csqrt%7B%5Csum%20%5B%28x-%5Cmu%29%5E%7B2%7D%5Ccdot%20P%28x%29%5D%7D)
Here,
<em>x</em> = midpoints

Consider the Excel table attached below.
The mean is:

Compute the standard deviation as follows:
![\sigma=\sqrt{\sum [(x-\mu)^{2}\cdot P(x)]}](https://tex.z-dn.net/?f=%5Csigma%3D%5Csqrt%7B%5Csum%20%5B%28x-%5Cmu%29%5E%7B2%7D%5Ccdot%20P%28x%29%5D%7D)

Thus, the standard deviation for the income of super shoppers is 76.12.