<span>Part B
What are the values of the intial velocity vector components v0,x and v0,y (both in m/s) as well as the acceleration vector components a0,x and a0,y (both in m/s2)? Here the subscript 0 means "at time t0."
15.0, 26.0, 0, -9.80
</span><span>Part C
What are the values of the velocity vector components v1,x and v1,y (both in m/s) as well as the acceleration vector components a1,x and a1,y (both in m/s2)? Here the subscript 1 means that these are all at time t1.
15, 26, 0, -9.81</span><span>
</span>
There's no such thing as one balanced force or one unbalanced force.
If ALL of the forces in a GROUP of forces acting on the same object
all add up to zero, then we say that the GROUP of forces is balanced.
If they don't, then the GROUP of forces is unbalanced.
Two or more forces can be balanced or unbalanced.
One force can't.
Answer:
The correct statement is "The electric field is directed toward the electron and has a magnitude of
".
Explanation:
According to Coulomb's law, the magnitude of the electric field due to a static point charge q at a point r distance away from it is given by

- k is the Coulmob's constant.
The direction of the electric field along the line joining the charge and the point where electric field is to be found and it is directed from positive charge to negative charge.
Conventionally, we assume a positive test charge placed at the point where electric field is to be found, the test charge has very small charge such that its charge does not affect the electric field due to the given charge.
The charge on the electron = -e.
The electric field due to an electron is given by

The direction of this electric field is from positive test charge, placed at the point where electric field is to be found, towards the electron along the line joining the two.
Thus, the correct statement is "The electric field is directed toward the electron and has a magnitude of
".
Answer:
a)
b) 
Explanation:
a) The displacement of the first object is 22.5 m, so we can use the next equation:



positive acceleration.
b) Using the same equation we can find the second value of the acceleration:


positive acceleration.
I hope it helps you!
Fossil B is older the lower they found the fossil the older it is