To solve this problem it is necessary to apply the related concepts to string vibration. This concept shows the fundamental frequency of a string due to speed and length, that is,

Where
v = Velocity
L = Length
Directly if the speed is maintained the frequency is inversely proportional to the Length:

Therefore the relationship between two frequencies can be described as


Our values are given as,

Therefore the second frequency is

The frequency allocation of 329Hz is note E.
Newton's 2nd law of motion:
Force = (mass) x (acceleration)
= (0.314 kg) x (164 m/s²)
= 51.5 newtons
(about 11.6 pounds) .
Notice that the ball is only accelerating while it's in contact with the racket.
The instant the ball loses contact with the racket, it stops accelerating, and
sails off in a straight line at whatever speed it had when it left the strings.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
Below is the solution:
9.43 m/s
<span>F = -kx </span>
<span>k = 400 N/m </span>
<span>PE= 0.5kx^2 = 0.5mv^2 </span>
<span>solve, v=9.43 m/s</span>
Answer:
22km/h
Explanation:
The speed of the keys relative to the ground will be given by the sum of speed of keys with respect to the ground and the speed of keys with respect to the skater
Given that the speed of keys with respect to the ground is 8 m/s while the speed of keys with respect to skater is 14 km/h then the relative speed which combines both speeds will be 8+14=22 km/hr
Answer:
From point A to point B there is 15sec and from point C to point D there is 9sec.
Explanation: