Answer:
The divergence on the sensor shows the magnitude of the charges
Explanation:
This will increase as length increases since it is said to be proportional to the length. note that test charge is always positive and charge on the grid is positive as indicated (1 nC)
Answer:
The force needed to slow down the car is, F = 67.5 N
Explanation:
Given data,
The mass of the car, m = 15 kg
The initial velocity of the car, V = 60 m/s
The final velocity of the car, v = 15 m/s
The time period of deceleration, t = 10 s
The difference in the momentum of the car is,
mV - mv = 15(60 - 15)
= 675 kg m/s
The rate of change in momentum of the car gives the force acting on it.
F = (mV - mu) / t
Substituting the values,
F = 675 / 10
= 67.5 N
Hence, the force needed to slow down the car is, F = 67.5 N
<span>The most likely type of star to be found in the halo are stars classified as M stars. These stars absorb red light, have temperatures under 3000K, have an average mass of .3 times the mass of the sun, have an average radius of .4 times the radius of the sun, and have .04 times the luminosity of the sun.</span>
Answer:
F = 2.113 x 10⁵ N
Explanation:
First we need to calculate the deceleration of the driver by using 3rd equation of motion:
2as = Vf² - Vi²
where,
a = deceleration = ?
s = distance = 5 cm = 0.05 m
Vf = Final Velocity = 0 m/s
Vi = Initial Velocity = 18 m/s
Therefore,
2a(0.05 m) = (0 m/s)² - (18 m/s)²
a = (- 324 m²/s²)/0.1 m
a = - 3240 m/s²
where, negative sign represents deceleration
From Newton's Second Law of Motion:
F = ma
F = (65 kg)(-3240 m/s²)
F = - 2.106 x 10⁵ N
So, he closest answer is:
<u>F = 2.113 x 10⁵ N</u>
An electric field is an electric property associated with each point in space when charge is present in any form.