Answer:
Explanation:
Building Vocabulary
Match each term with its definition by writing the letter of the correct definition on
the line beside the term in the left column.
5. nucleus b
6. proton f
7. neutron h
8. electron d
9. atomic number g
10. isotopes c
11. mass number a
12. energy level e
a. the sum of protons and neutrons in the nucleus of an
atom
b. the very small center core of an atom
c. atoms of the same element that differ in the number
of neutrons, but have the same number of protons
d. the particle of an atom that moves rapidly in the
space outside the nucleus
e. a specific amount of energy related to the movement
of electrons in atoms
f. the particle of an atom with a positive charge
g. the number of protons in the nucleus of every atom
of an element
h. the particle of an atom that is neutral
-. mass number a.
12. energy level e
The structures shown are examples of Constitutional Isomer.
In Chemistry, an isomer refers to a molecule that is similar to another but has differences. These differences can be:
- A difference in the constitution: The molecules have the same formula but the connectivities between elements or arrangement is different.
- Arrangement in space: The molecules have the same formula and connectivity, but they look different to do an arrangement in space of a position.
The molecules shown have the same formula because the elements in each pair are the same. However, the way these elements are connected is slightly different because the Br and the CH3 are connected to different carbons.
Based on this, the difference is the connectivity or constitution, and therefore these are constitutional isomers.
Learn more in: brainly.com/question/17125223
<u>Answer:</u> The activation energy of the reaction is 124.6 kJ/mol
<u>Explanation:</u>
To calculate activation energy of the reaction, we use Arrhenius equation, which is:
![\ln(\frac{K_{79^oC}}{K_{26^oC}})=\frac{E_a}{R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BK_%7B79%5EoC%7D%7D%7BK_%7B26%5EoC%7D%7D%29%3D%5Cfrac%7BE_a%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= equilibrium constant at 79°C = 
= equilibrium constant at 26°C = 
= Activation energy of the reaction = ?
R = Gas constant = 8.314 J/mol K
= initial temperature = ![26^oC=[26+273]K=299K](https://tex.z-dn.net/?f=26%5EoC%3D%5B26%2B273%5DK%3D299K)
= final temperature = ![79^oC=[79+273]K=352K](https://tex.z-dn.net/?f=79%5EoC%3D%5B79%2B273%5DK%3D352K)
Putting values in above equation, we get:
![\ln(\frac{0.394}{2.08\times 10^{-4}})=\frac{E_a}{8.314J/mol.K}[\frac{1}{299}-\frac{1}{352}]\\\\E_a=124595J/mol=124.6kJ/mol](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7B0.394%7D%7B2.08%5Ctimes%2010%5E%7B-4%7D%7D%29%3D%5Cfrac%7BE_a%7D%7B8.314J%2Fmol.K%7D%5B%5Cfrac%7B1%7D%7B299%7D-%5Cfrac%7B1%7D%7B352%7D%5D%5C%5C%5C%5CE_a%3D124595J%2Fmol%3D124.6kJ%2Fmol)
Hence, the activation energy of the reaction is 124.6 kJ/mol
Since this has to do with titration, the measured volume of NaOH used would be less than the actual volume used because some of the unused NaOH would cling to the sides of the buret and therefore wouldn't factor into the measurement
Hope this helps
Answer:
Because his first law states that an object with a net force of zero acting on it will remain at rest, if initially at rest, or it will maintain a constant velocity.