Sorry I’m just here for more questions
Answer:
Solution A is correct.
Explanation:
Strong acids or bases are assumed to dissociate completely when in a aqueous solution.
Moles = mass / molar mass
molar mass of O2 is 32
therefore moles = 72/32
= 2.25 moles
The micromoles of mercury(II) iodide : 0.013 μ moles
<h3>Further explanation</h3>
Given
215.0mL of a 6.0x10⁻⁵mmol/L HgI₂
Required
micromoles of HgI₂
Solution
Molarity(M) = moles of solute per liters of solution
Can be formulated :
M = n : V
n = moles
V = volume of solution
V = 215 mL = 0.215 L
so moles of solution :
n = M x V
n = 6.10 mmol/L x 0.215 L
n = 1.312 . 10⁻⁵ mmol
mmol = 10³ micromol
so 1.312 mmol = 1.312.10⁻⁵ x 10³ = 0.01312 micromoles ⇒ 2 sif fig = 0.013 μ moles
Sodium hypochlorite is used in iodoform test for the oxidation of alcohol to aldehyde as shown in the image attached:
Here sodium hypochlorite is formed by the reaction of NaOH with I2 that further oxides alcohols to aldehydes.