The statement that defines the specific heat capacity for a given sample is the quantity of heat that is required to raise 1 g of the sample by 1°C (Kelvin) at a constant pressure.
<h3>What is specific heat capacity?</h3>
Specific heat capacity is the of heat to increase the temperature per unit mass.
The formula to calculate the specific heat is Q = mct.
The options are attached here:
- The temperature of a given sample is 1 %.
- The temperature that a given sample can withstand.
- The quantity of heat that is required to raise the sample's temperature by 1 °C1 °C (Kelvin).
- The quantity of heat that is required to raise 1 g of the sample by 1°C (Kelvin) at a constant pressure.
Thus, the correct option is 4. The quantity of heat that is required to raise 1 g of the sample by 1°C (Kelvin) at a constant pressure.
Learn more about specific heat capacity
brainly.com/question/1747943
#SPJ1
Answer:
55.18 L
Explanation:
First we convert 113.4 g of NO₂ into moles, using its molar mass:
- 113.4 g ÷ 46 g/mol = 2.465 mol
Then we<u> use the PV=nRT formula</u>, where:
- P = 1atm & T = 273K (This means STP)
- R = 0.082 atm·L·mol⁻¹·K⁻¹
Input the data:
- 1 atm * V = 2.465 mol * 0.082atm·L·mol⁻¹·K⁻¹ * 273 K
And <u>solve for V</u>:
Answer:
1.70
Explanation:
The molar mass of perchloric acid is 100.46 g/mol. The moles corresponding to 484 mg (0.484 g) are:
0.484 g × (1 mol/100.46 g) = 4.82 × 10⁻³ mol
4.82 × 10⁻³ moles are dissolved in 240 mL (0.240 L) of solution. The molar concentration of perchloric acid is:
4.82 × 10⁻³ mol/0.240 L = 0.0201 M
Perchloric acid is a strong monoprotic acid, that is, it dissociates completely, so [H⁺] = 0.0201 M.
The pH is:
pH = -log [H⁺] = -log 0.0201 = 1.70