Explanation:
what i would think is when u spray your air freshener it sprays molecules of that freshener the molecules dont just spray and go down there it spreads around the room and some of those molecules also enter ones nose and that is why he smells the freshener
i hope this is helps
Oxygen has a strong double bond which has more stability than the single co-ordinate bond in ozone, therefore more energy is required to break the O2 bonding than ozone, so the ozone molecule is more reactive than oxygen gas. ... The oxygen free radical contains two unpaired electrons in its valence shell.
Making repeated separations of the various substances in the pitchblende, Marie and Pierre used the Curie electrometer to identify the most radioactive fractions. They thus discovered that two fractions, one containing mostly bismuth and the other containing mostly barium, were strongly radioactive.
<h3>What was surprising about pitchblende?</h3>
Since it was no longer appropriate to call them “uranic rays,” Marie proposed a new name: “radioactivity.”
Even more surprising, Marie next found that a uranium ore called pitchblende contained two powerfully radioactive new elements: polonium, which she named for her native Poland, and radium.
<h3>Why is radium more radioactive than uranium?</h3>
It is 2.7 million times more radioactive than the same molar amount of natural uranium (mostly uranium-238), due to its proportionally shorter half-life.
Learn more about highly radioactive elements here:
<h3>
brainly.com/question/10257016</h3><h3 /><h3>#SPJ4</h3>
Basically this is used in calculating the nuclear binding energy by converting the mass defect (calculated first) to energy and if we recall, Einstein's equation E=mc2 is the perfection equation to use because E=mc2 in which E represents units of energy, m represents units of mass, and c 2 is the speed of light squared.
The shape of the molecule will determine the direction of each of the individual bond dipoles, and thus, will always play a role in determining the polarity of the molecule as a whole.