No it is affected by temperatures .
The given question is incomplete. The complete question is:
How much heat is produced when 24.8 g of
is burned in excess oxygen gas
Given:
ΔH= −802 kJ.
Answer: 1243.1 kJ
Explanation:
Heat of combustion is the amount of heat released on complete combustion of 1 mole of substance.
Given :
Amount of heat released on combustion of 1 mole of methane = 802 kJ kJ/mol
According to avogadro's law, 1 mole of every substance occupies 22.4 L at NTP, weighs equal to the molecular mass and contains avogadro's number
of particles.
1 mole of
weighs = 16 g
Thus we can say:
16 g of
on combustion releases heat = 802 kJ
Thus 24.8 g of
on combustion releases =
Thus heat released when 24.8 g of methane is burned in excess oxygen gas is 1243.1 kJ
Let us calculate the structure of the electric shells of the Al atom. It has an atomic number of 13, so it has 13 electrons. The first 2 go to the first hell. The next 8 need to go to the second shell and the last 3 ones would go to the outermost shell. The outer shell, that is the most important one for chemical reactions, has thus 3 electrons. An atom always tries to have a completed outer shell (with either 2 or 8 atoms). It is easier for a cell to have a charge of +3 than a charge of -5 (smaller absolute value) and thus the Aluminum atom will try to get rid of the 3 electrons. In this process, it loses negative charge thus it will become positively charged. Hence, the correct answer is that it will prefer to lose 3 electrons and become positively charged.
Honestly I don’t even know
Energy released from cell respiration is know as ATP