Specific heat capacity is the required amount of heat per unit of mass in order to raise teh temperature by one degree Celsius. It can be calculated from this equation: H = mCΔT where the H is heat required, m is mass of the substance, ΔT is the change in temperature, and C is the specific heat capacity.
H = m<span>CΔT
2501.0 = 0.158 (C) (61.0 - 32.0)
C = 545.8 J/kg</span>·°C
Answer:
(E) changing temperature
Explanation:
Consider the following reversible balanced reaction:
aA+bB⇋cC+dD
If we know the molar concentrations of each of the reaction species, we can find the value of Kc using the relationship:
Kc = ([C]^c * [D]^d) / ([A]^a * [B]^b)
where:
[C] and [D] are the concentrations of the products in the equilibrium; [A] and [B] reagent concentrations in equilibrium; already; b; c and d are the stoichiometric coefficients of the balanced equation. Concentrations are commonly expressed in molarity, which has units of moles / 1
There are some important things to remember when calculating Kc:
- <em>Kc is a constant for a specific reaction at a specific temperature</em>. If you change the reaction temperature, then Kc also changes
- Pure solids and liquids, including solvents, are not considered for equilibrium expression.
- The reaction must be balanced with the written coefficients as the minimum possible integer value in order to obtain the correct value of Kc
Protons and neutrons have most of the mass but occupy very little of the volume of the atom.
That would be 0.26 liters
Hope it help!
~Mqddie
Answer:
Explanation:
A. The charge on an element is determined by the differences between the number of protons and electrons in an atom.
An atom will have no charges if the number of protons and electrons are the same.
- When an atom loses or gains electrons, the number of electrons will either decrease or increase
- if the number of electrons is more than the number of protons, the excess electrons is the charge on the atom. And this makes the atom become a negatively charged ion.
- if the number of electrons is lesser than the number of protons, the deficient electrons makes the atom a positively charged ion. The number of electrons by which the atom is deficient makes the atom a positively charged ion.
Charge = number of protons - number of electrons
B. Electrons form the charges they do because with the charge, they become stable like the noble gases.
The desire of every atom is to have stable electronic configuration like those of the noble gases.
A potassium atom with a configuration 2 8 8 1 will prefer to lose an electron to become an Argon atom making the ion stable.