It's is the first question as the answer says.
The domain and range of the given function are equal to (0, 3.85) and (0, 18.75) respectively.
<h3>How to calculate the domain of the function?</h3>
In this exercise, you're given the following function h(t) = -4.87t² + 18.75t. Next, we would equate the function to zero (0) to determine its domain as follows:
0= -4.87t² + 18.75t.
4.87t(-t + 3.85) = 0
t = 0 or t = 3.85.
Therefore, the domain is 0 ≤ t ≤ 3.85 or (0, 3.85).
<h3>How to calculate the range of the function?</h3>
h(t) = -4.87t² + 18.75t
h(t) = -4.87(t² - 3.85t + 3.85 - 3.85)
h(t) = -4.87(t - 1.925)² + 18.05
Therefore, the range is 0 ≤ h ≤ 18.05 or (0, 18.75).
Read more on domain here: brainly.com/question/17003159
#SPJ1
The minimum happens at x = -b/2a
x = -30 / 2(3) = -30/6 = -5
Now replace x in the equation with -5 and solve:
3(-5)^2 + 30(-5) +27 = 75 - 150 + 27 = -48
The minimum is at (-5,-48)
Y is going to be equal to four