Answer:
12.9 m³ is the new volume
Explanation:
As the temperature keeps on constant, and the moles of the gas remains constant too, if we decrease the pressure, the volume will increase. If the volume is decreased, pressure will be higher.
The relation is this: P₁ . V₁ = P₂ . V₂
1 atm . 0.93m³ = 0.072 atm . V₂
0.93m³ .atm / 0.072 atm = V₂
V₂ = 12.9 m³
In conclusion and as we said, pressure has highly decreased so volume has highly increased.
Answer:
1.51367e+10 inches
Explanation:
1 mile = 63360
63360 x 238900 = 15136704000
Hope this helped!
Answer: Option (E) is the correct answer.
Explanation:
A spontaneous reaction is defined as the process which tends to occur on its own. And, a non-spontaneous reaction is defined as a process for the completion of which we have to provide certain conditions.
For example, ice melting at
is spontaneous primarily due to the increase in molecular disorder (dispersal of matter). Also, melting of ice is taking place on its own without any external force.
It is not necessary that all exothermic reactions will be exothermic in nature.
Thus, we can conclude that the statement all exothermic reactions are spontaneous, is false.
Answer:
The value of Q must be less than that of K.
Explanation:
The difference of K and Q can be understood with the help of an example as follows
A ⇄ B
In this reaction A is converted into B but after some A is converted , forward reaction stops At this point , let equilibrium concentration of B be [B] and let equilibrium concentration of A be [A]
In this case ratio of [B] and [A] that is
K = [B] / [A] which is called equilibrium constant.
But if we measure the concentration of A and B ,before equilibrium is reached , then the ratio of the concentration of A and B will be called Q. As reaction continues concentration of A increases and concentration of B decreases. Hence Q tends to be equal to K.
Q = [B] / [A] . It is clear that Q < K before equilibrium.
If Q < K , reaction will proceed towards equilibrium or forward reaction will
proceed .