1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Furkat [3]
3 years ago
5

Explain why a magnetic material is attracted by a magnet.​

Physics
1 answer:
natita [175]3 years ago
7 0

Answer:

Magnetic materials are naturally attracted to other magnets

Explanation:

I hope I got this right

You might be interested in
Which is a charcharacteristic of all ions?
ankoles [38]

An ion is created by the transfer of electrons. The metals give away the elections and become positively charged. The non - metals take on electrons.

Balance.

So an ion is any atom that either gives away or takes on electrons.

8 0
3 years ago
A 6.5 kg rock thrown down from a 120m high cliff with initial velocity 18 m/s down. Calculate
Olegator [25]

Answer:

See the answers below.

Explanation:

In order to solve this problem we must use the principle of energy conservation. Which tells us that the energy of a body will always be the same regardless of where it is located. For this case we have two points, point A and point B. Point A is located at the top at 120 [m] and point B is in the middle of the cliff at 60 [m].

E_{A}=E_{B}

The important thing about this problem is to identify the types of energy at each point. Let's take the reference level of potential energy at a height of zero meters. That is, at this point the potential energy is zero.

So at point A we have potential energy and since a velocity of 18 [m/s] is printed, we additionally have kinetic energy.

E_{A}=E_{pot}+E_{kin}\\E_{A}=m*g*h+\frac{1}{2}*m*v^{2}

At Point B the rock is still moving downward, therefore we have kinetic energy and since it is 60 [m] with respect to the reference level we have potential energy.

E_{B}=m*g*h+\frac{1}{2}*m*v^{2}

Therefore we will have the following equation:

(6.5*9.81*120)+(0.5*6.5*18^{2} )=(6.5*9.81*60)+(0.5*6.5*v_{B}^{2} )\\3.25*v_{B}^{2} =4878.9\\v_{B}=\sqrt{1501.2}\\v_{B}=38.75[m/s]

The kinetic energy can be easily calculated by means of the kinetic energy equation.

KE_{B}=\frac{1}{2} *m*v_{B}^{2}\\KE_{B}=0.5*6.5*(38.75)^{2}\\KE_{B}=4878.9[J]

In order to calculate the velocity at the bottom of the cliff where the reference level of potential energy (potential energy equal to zero) is located, we must pose the same equation, with the exception that at the new point there is only kinetic energy.

E_{A}=E_{C}\\6.5*9.81*120+(0.5*9.81*18^{2} )=0.5*6.5*v_{C}^{2} \\v_{c}^{2} =\sqrt{2843.39}\\v_{c}=53.32[m/s]

5 0
3 years ago
A 1.2 kg hammer slams down on a nail at 5.0 m/s and bounces off at 1.0 m/s. If the impact lasts 1.0 ms, what average force is ex
Delvig [45]

Answer:

Explanation:

Impulse results in a change of momentum

FΔt = mΔV

F = mΔV/Δt

The impulse acting on the hammer will equal the impulse acting on the nail

If we assume upward is the positive direction

F = m(vf - vi)/t

F = 1.2(1.0 - (-1.5)) / 0.001

F = 3000 N

7 0
2 years ago
A cup of coffee is sitting on a table in a train that is moving with a constant velocity. The coefficient of static friction bet
Vikki [24]

Answer:

a = 2.94 m/s²

Explanation:

In order for the cup not to slip, the unbalanced force on cup must be equal to the frictional force:

Unbalanced Force = Frictional Force

ma = μR = μW

ma = μmg

a = μg

where,

a = maximum acceleration for the cup not to slip = ?

μ = coefficient of static friction = 0.3

g = acceleration due to gravity = 9.8 m/s²

Therefore,

a = (0.3)(9.8 m/s²)

<u>a = 2.94 m/s²</u>

3 0
3 years ago
Please help ASAP! Thank you :)
puteri [66]

Answer:

magnitude of gravitational force between the Earth and the Sun at B is greater than that at A

Explanation:

Formula of gravitational force:

F = GMm/r^2

(r is the distance between 2 objects)

We see that r(B) < r(A) since at B, the Earth is closer to the Sun than at A

According to the Formula, the smaller r is, the greater F is

So, F(B) > F(A)

8 0
2 years ago
Other questions:
  • Uncle Fester's CD's
    12·1 answer
  • light spring of force constant k = 158 N/m rests vertically on the bottom of a large beaker of water (Figure a). A 4.36-kg block
    14·1 answer
  • Air is flowing through a rocket nozzle. Inside the rocket the air has a density of 5.25 kg/m3 and a speed of 1.20 m/s. The inter
    13·1 answer
  • Using energy considerations and assuming negligible air resistance, show that a rock thrown from a bridge 25.0 m above water wit
    8·1 answer
  • When a metal wire has an electric field applied, electric current flows. a) If we consider the path the electrons take through t
    5·1 answer
  • A cylindrical metal specimen having an original diameter of 11.77 mm and gauge length of 46.1 mm is pulled in tension until frac
    5·1 answer
  • Which reverses the flow of current through<br> an electric motor?
    13·1 answer
  • . You are sitting on a beach watching the waves roll in. In 12 seconds, 6 waves roll by. What is the period of the waves (7)? Wh
    9·1 answer
  • In an electric motor, electrical energy is converted into
    9·1 answer
  • A person stands 6.00 m from a speaker, and 8.00 m from an identical speaker. What is the wavelength of the first (n=1) interfere
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!