Answer:
4086 J
Explanation:
The potential energy is transformed to kinetic energy less the frictional energy. Potential energy= mgh where m represent mass, g is acceleration due to gravity and h is the height of cliff
Since we have force of air resistance, work done due to air resistance will be product of force and distance

Substituting 10 Kg for m, 9.81 for g and 60 m for F then the kinetic energy at the bottom will be
KE= 10*9.81*60- (30*60)=4086 J
Answer: Alfred Wegener provided some of the important points that supported the theory of continental drift. They are as follows-
- The continents were once all attached together, and this can be proved by studying the coastlines of some of the continents that perfectly matches with one another.
- The appearance of similar rock types and similar fossils (including both animals and plants) has also contributed much information that continents were once all together.
Angry sound level = 70 db
Soothing sound level = 50 db
Frequency, f = 500 Hz
Assuming speed of sound = 345 m/s
Density (assumed) = 1.21 kg/m^3
Reference sound intensity, Io = 1*10^-12 w/m^2
Part (a): Initial sound intensity (angry sound)
10log (I/Io) = Sound level
Therefore,
For Ia = 70 db
Ia/(1*10^-12) = 10^(70/10)
Ia = 10^(70/10)*10^-12 = 1*10^-5 W/m^2
Part (b): Final sound intensity (soothing sound)
Is = 50 db
Therefore,
Is = 10^(50/10)*10^-12 = 18*10^-7 W/m^2
Part (c): Initial sound wave amplitude
Now,
I (W/m^2) = 0.5*A^2*density*velocity*4*π^2*frequency^2
Making A the subject;
A = Sqrt [I/(0.5*density*velocity*4π^2*frequency^2)]
Substituting;
A_initial = Sqrt [(1*10^-5)/(0.5*1.21*345*4π^2*500^2)] = 6.97*10^-8 m = 69.7 nm
Part (d): Final sound wave amplitude
A_final = Sqrt [(1*10^-7)/(0.5*1.21*345*4π^2*500^2)] = 6.97*10^-9 m = 6.97 nm
1. Always be the bigger person
2. Violence is never the answer
3. Don’t fight fire with fire
Volume of tea V = 2.0L = 2000 mL density d = 1.01 g/ mL mass of tea m = V * d = 2000mL * 1.01g/mL = 2020 gWhen we assume that the tea was initially at 72, the final temperature of the tea in F is 91.
The answer in this question is B. 91