Answer:
Taylor has 14 Nickels and 7 Quarters
Step-by-step explanation:
A nickel is equivalent to 5 cent while a quarter is equivalent to 25 cents.
If the number of nickels Taylor has is 2x then the number of quarters is x
Given that the total value is 245 cents,
5(2x) + 25x = 245
10x + 25x = 245
35x = 245
x = 7, 2x = 2 × 7 = 14
It means Taylor has 14 Nickels and 7 Quarters
2x + 5 = 11
2x = 6
x = 3
y + 4 = 2x + 4
y + 4 = 2(3) + 4
y + 4 = 10
y = 6
answer
x = 3 and y = 6
R=(3V4<span>Home: Kyle's ConverterKyle's CalculatorsKyle's Conversion Blog</span>Volume of a Sphere CalculatorReturn to List of Free Calculators<span><span>Sphere VolumeFor Finding Volume of a SphereResult:
523.599</span><span>radius (r)units</span><span>decimals<span> -3 -2 -1 0 1 2 3 4 5 6 7 8 9 </span></span><span>A sphere with a radius of 5 units has a volume of 523.599 cubed units.This calculator and more easy to use calculators waiting at www.KylesCalculators.com</span></span> Calculating the Volume of a Sphere:
Volume (denoted 'V') of a sphere with a known radius (denoted 'r') can be calculated using the formula below:
V = 4/3(PI*r3)
In plain english the volume of a sphere can be calculated by taking four-thirds of the product of radius (r) cubed and PI.
You can approximated PI using: 3.14159. If the number you are given for the radius does not have a lot of digits you may use a shorter approximation. If the radius you are given has a lot of digits then you may need to use a longer approximation.
Here is a step-by-step case that illustrates how to find the volume of a sphere with a radius of 5 meters. We'll u
π)⅓
Okay so plug them in to get x and y so use 5 as x and 1 as y
Answer:
(4,0)
Step-by-step explanation:
we have
----> inequality A
----> inequality B
we know that
If a ordered pair is a solution of the system of inequalities, then the ordered pair must satisfy both inequalities (makes true both inequalities)
Verify each ordered pair
case 1) (4,0)
<em>Inequality A</em>
----> is true
<em>Inequality B</em>

----> is true
so
the ordered pair makes both inequalities true
case 2) (1,2)
<em>Inequality A</em>
----> is not true
so
the ordered pair not makes both inequalities true
case 3) (0,4)
<em>Inequality A</em>
----> is not true
so
the ordered pair not makes both inequalities true
case 4) (2,1)
<em>Inequality A</em>
----> is true
<em>Inequality B</em>

----> is not true
so
the ordered pair not makes both inequalities true