Step 1:
Start by putting

in front of each term
![\frac{d}{dx}[y cos x]= \frac{d}{dx}[5x^2]+ \frac{d}{dx}[ 3y^2]](https://tex.z-dn.net/?f=%20%5Cfrac%7Bd%7D%7Bdx%7D%5By%20cos%20x%5D%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B5x%5E2%5D%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%203y%5E2%5D)
-----------------------------------------------------------------------------------------------------------------
Step 2:
Deal with the terms in 'x' and the constant terms
![\frac{d}{dx}[ycosx]= 10x+ \frac{d}{dx} [3y^2]](https://tex.z-dn.net/?f=%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bycosx%5D%3D%2010x%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5B3y%5E2%5D%20%20)
----------------------------------------------------------------------------------------------------------------
Step 3:
Use the chain rule for the terms in 'y'
![\frac{d}{dx}[ycosx]=10x+6y \frac{dy}{dx}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bycosx%5D%3D10x%2B6y%20%5Cfrac%7Bdy%7D%7Bdx%7D%20%20)
--------------------------------------------------------------------------------------------------------------
Step 4:
Use the product rule on the term in 'x' and 'y'


--------------------------------------------------------------------------------------------------------------
Step 5:
Rearrange to make

the subject


![[cos(x) - 6y] \frac{dy}{dx}=10x + y sin(y)](https://tex.z-dn.net/?f=%5Bcos%28x%29%20-%206y%5D%20%20%5Cfrac%7Bdy%7D%7Bdx%7D%3D10x%20%2B%20y%20sin%28y%29%20)

⇒ Final Answer
Answer:
confidence interval using a two sample t test between percents
Step-by-step explanation:
confidence interval using a two sample t test between percents This can be used to compare percentages drawn from two independent samples in this case employees. It is used to compare two sub groups from a single sample example the population on the planet
Answer:
The answer is C the 2 rectangles
Potato Flakes: 2 cups
Boiling Water: 1 1/2 cups
A point that bisects a segment would be its midpoint. This is a case where the vocabulary (bisect as opposed to midpoint) makes it harder.
To find the midpoint, we use the midpoint formula. The midpoint formula is:
midpoint = (x₁ + x₂/2, y₁ + y/2). To find it, you add the x coordinates and then divide them by 2. Repeat for the y coordinates.
x: (-2 + 6)/2 = 4/2 = 2
y: (5 +1)/2 = 6/2 = 3
Thus the point B bisecting AC is at (2, 3).