1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KiRa [710]
3 years ago
8

Which of the following will cause a decrease in ADH production?

Biology
1 answer:
FromTheMoon [43]3 years ago
6 0
C

drinking water may not be enough to keep your symptoms under control.
You might be interested in
Phenotypic features that are coded for by several genes, such as eye color in humans, are called
alukav5142 [94]
They are called polygenic 
4 0
2 years ago
Why is base pairing important in DNA?
PilotLPTM [1.2K]

Answer:

Explanation:Complementary base pairing is important in DNA as it allows the base pairs to be arranged in the most energetically favourable way; it is essential in forming the helical structure of DNA. It is also important in replication as it allows semiconservative replication.

4 0
3 years ago
Mechanical energy is defined as the sum of both the potential energy and the kinetic energy of an object. According to the law o
icang [17]

i think the answer is B, i may be wrong... because potential energy is stored energy and kinetic energy is energy due to motion so the less potential energy the more kinetic energy

and mechanical energy means the energy of motion, such as a moving vechile which is using kinetic energy.

5 0
3 years ago
A description of the role of sensory organs and the types of<br> stimuli the organs receive
bogdanovich [222]

Tongue

The four intrinsic tongue muscles work together to give the tongue great flexibility.

The nervous system must receive and process information about the world outside in order to react, communicate, and keep the body healthy and safe. Much of this information comes through the sensory organs: the eyes, ears, nose, tongue, and skin. Specialized cells and tissues within these organs receive raw stimuli and translate them into signals the nervous system can use. Nerves relay the signals to the brain, which interprets them as sight (vision), sound (hearing), smell (olfaction), taste (gustation), and touch (tactile perception).

1. The Eyes Translate Light into Image Signals for the Brain to Process

The eyes sit in the orbits of the skull, protected by bone and fat. The white part of the eye is the sclera. It protects interior structures and surrounds a circular portal formed by the cornea, iris, and pupil. The cornea is transparent to allow light to enter the eye, and curved to direct it through the pupil behind it. The pupil is actually an opening in the colored disk of the iris. The iris dilates or constricts, adjusting how much light passes through the pupil and onto the lens. The curved lens then focuses the image onto the retina, the eye’s interior layer. The retina is a delicate membrane of nervous tissue containing photoreceptor cells. These cells, the rods and cones, translate light into nervous signals. The optic nerve carries the signals from the eye to the brain, which interprets them to form visual images.

2. The Ear Uses Bones and Fluid to Transform Sound Waves into Sound Signals

Music, laughter, car honks — all reach the ears as sound waves in the air. The outer ear funnels the waves down the ear canal (the external acoustic meatus) to the tympanic membrane (the “ear drum”). The sound waves beat against the tympanic membrane, creating mechanical vibrations in the membrane. The tympanic membrane transfers these vibrations to three small bones, known as auditory ossicles, found in the air-filled cavity of the middle ear. These bones – the malleus, incus, and stapes – carry the vibrations and knock against the opening to the inner ear. The inner ear consists of fluid-filled canals, including the spiral-shaped cochlea. As the ossicles pound away, specialized hair cells in the cochlea detect pressure waves in the fluid. They activate nervous receptors, sending signals through the cochlear nerve toward the brain, which interprets the signals as sounds.

3. Specialized Receptors in the Skin Send Touch Signals to the Brain

Skin consists of three major tissue layers: the outer epidermis, middle dermis, and inner hypodermis. Specialized receptor cells within these layers detect tactile sensations and relay signals through peripheral nerves toward the brain. The presence and location of the different types of receptors make certain body parts more sensitive. Merkel cells, for example, are found in the lower epidermis of lips, hands, and external genitalia. Meissner corpuscles are found in the upper dermis of hairless skin — fingertips, nipples, the soles of the feet. Both of these receptors detect touch, pressure, and vibration. Other touch receptors include Pacinian corpuscles, which also register pressure and vibration, and the free endings of specialized nerves that feel pain, itch, and tickle.

4. Olfaction: Chemicals in the Air Stimulate Signals the Brain Interprets as Smells

The sense of smell is called olfaction. It starts with specialized nerve receptors located on hairlike cilia in the epithelium at the top of the nasal cavity. When we sniff or inhale through the nose, some chemicals in the air bind to these receptors. That triggers a signal that travels up a nerve fiber, through the epithelium and the skull bone above, to the olfactory bulbs. The olfactory bulbs contain neuron cell bodies that transmit information along the cranial nerves, which are extensions of the olfactory bulbs. They send the signal down the olfactory nerves, toward the olfactory area of the cerebral cortex.

5. Home of the Taste Buds: The Tongue Is the Principal Organ of Gustation

What are all those small bumps on the top of the tongue? They’re called papillae. Many of them, including circumvallate papillae and fungiform papillae, contain taste buds. When we eat, chemicals from food enter the papillae and reach the taste buds. These chemicals (or tastants) stimulate specialized gustatory cells inside the taste buds, activating nervous receptors. The receptors send signals to fibers of the facial, glossopharyngeal, and vagus nerves. Those nerves carry the signals to the medulla oblongata, which relays them to the thalamus and cerebral cortex of the brain.

4 0
3 years ago
How many letters go in each box to represent the offspring
Masteriza [31]

Answer:

is there anything else that it showed in that question bc we dont know how large the off spring is to answer this

Explanation:

sorry

3 0
2 years ago
Read 2 more answers
Other questions:
  • Forms when a cooler air mass displaces a warmer air mass and usually indicates drops in temperature, heavy rains, and sometimes
    5·1 answer
  • Organisms in the same ecosystem are all _______.
    10·1 answer
  • What traits does the kingdom protists fall under
    10·1 answer
  • BRAINLYEST FOR BEST ANSWER AND NICE AMOUNT OF POINTS
    8·1 answer
  • Each _______ organism typically hasto two different alleles for each gene.
    11·1 answer
  • While playing soccer in your backyard, you disrupt a small fire ant mound. The fire ants emerge and bite your feet. Your feet be
    15·1 answer
  • The three types of ocean floor sediments are terrigenous, biogenous, and _____.
    7·2 answers
  • 16. An organ system is a group of organs that (2 points)
    14·1 answer
  • Wffffffffffffffffffffffffffffffffffffffffff
    8·1 answer
  • How is sucrose moved in sink?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!