Using the normal distribution, it is found that a production worker has to make $542.64 a week to be in the top 30% of wage earners.
<h3>Normal Probability Distribution</h3>
In a normal distribution with mean
and standard deviation
, the z-score of a measure X is given by:

- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
In this problem:
- The mean is of
.
- The standard deviation is of
.
- The lower bound of the top 30% is the 70th percentile, which is X when Z has a p-value of 0.7, so <u>X when Z = 0.84.</u>




A production worker has to make $542.64 a week to be in the top 30% of wage earners.
You can learn more about the normal distribution at brainly.com/question/24663213
Answer:
167.2 m/sec
Step-by-step explanation:
Convert 602 km/hr to m/sec, as follows:
602 km 1000 m
------------ * ----------------- = 602,000 m/hr
hr 1 km
Recall that 1 hr = 3600 sec. Convert 602,000 m/hr to m/sec:
602,000 m 1 hr
------------------ * ---------------- = 167.2 m/sec
1 hr 3600 sec