The atomic mass of the isotope Ni ( 62 over 28 ) = 61.928345 amu.
Mass of the electrons: 28 · 5.4584 · 10^(-4 ) amu = 0.0152838 amu ( g/mol )
Mass of the nuclei:
61.928345 amu - 0.0152838 amu = 61.913062 amu (g/mol)
The mass difference between a nucleus and its constituent nucleons is called the mass defect.
For Ni ( 62 over 28 ): Mass of the protons: 28 · 1.00728 amu = 28.20384 amu
Mass of the neutrons: 34 · 1.00866 amu = 34.299444 amu
In total : 62.49828 amu
The mass defect = 62.49828 - 61.913062 = 0.585218 amu
Nucleus binding energy:
E = Δm · c² ( the Einstein relationship )
E = 0.585218 · ( 2.9979 · 10^8 m/s )² · 1 / (6.022 · 10^23) · 1 kg / 1000 g =
= 0.585218 · 8.9874044 · 10 ^16 : (6.022 · 10^23) · 0.001 =
= ( 5.2595908 : 6.022 ) · 0.001 · 10^(-7 ) =
= 0.0008733 · 10^(-7) J = 8.733 · 10^(-11) J
The nucleus binding energy per nucleon:
8.733 · 10^(-11) J : 62 = 0.14085 · 10 ^(-11) =
= 1.4085 · 10^(-12) J per nucleon.
Answer:
A
Explanation:
I think the answer would be A
Answer:
B.
Explanation:
Everything else is not a drawback, it is a benefit.
Answer:
0.752 J/g*K
Explanation:
The heat lost by the alloy (which is negative) must be equal to the heat gained by the water and the coffee cup:
-Qa = Qw + Qc
-ma*ca*ΔTa = mw*cw*ΔTw + C*ΔTc
Where, m is the mass, c is the specific heat capacity, C is the heat capacity of the coffee cup, ΔT is the change in temperature, a represents the alloy, and w the water.
The coffee cup has initial temperature equal to the water, then:
-30.5*ca*(31.1 - 95.0) = 49.3*4.184*(31.1 - 24.3) + 9.2*(31.1 - 24.3)
1948.95ca = 1465.20
ca = 0.752 J/g*K
The answers to this problem is C