By using the Plancks-Einstein equation, we can find the energy;
E = hf
where h is the plancks constant = 6.63 x 10⁻³⁴
f = frequency = 3.55 x 10¹⁷hz
E = (6.63 x 10⁻³⁴) x (3.55 x 10¹⁷)
E = 2.354 x 10⁻¹⁶J
Answer: 459.14 N
Explanation:
from the question, we have
diameter = 10 m
radius (r) = 5 m
weight (Fw) = 670 N
time (t) = 8 seconds
Circular motion has centripetal force and acceleration pointing perpendicular and inwards of the path, therefore we apply the equation below
∑ F = F c = F w − Fn ..............equation 1
Fn = Fw − Fc = mg − (mv^2 / r) ...................equation 2
substituting the value of v as (2πr / T) we now have
Fn = mg − (m(2πr / T )^2) / r
Fn= mg − (4(π^2)mr / T^2) ..........equation 3
Fw (mass of the person) = mg
therefore m = Fw / g
m = 670 / 9.8 = 68.367 kg
now substituting our values into equation 3
Fn = 670 - ( (4 x (π^2) x 68.367 x 5 ) / 8^2)
Fn = 670 - 210.86
Fn = 459.14 N
The electric potential at point A in the electric field= 0.099 x 10 ⁻¹v
<u>Explanation</u>:
Given data,
charge = 5.5 x 10¹² C
k =9.00 x 10⁹
The electric potential V of a point charge can found by,
V= kQ / r
Assuming, r=5.00×10⁻² m
V= 5.5 x 10⁻¹²C x 9.00 x 10⁹ / 5.00×10⁻² m
V= 49.5 x 10⁻³/ 5.00×10⁻²
Electric potential V= 0.099 x 10⁻¹v
That’s the answer hope you enjoy
Answer:
bicycle A has a greater K.E.
Explanation:
K.E = 1/2mv²
bicycle A = 1/2 × 40 × 4² = 320J
bicycle B = 1/2 × 20 × 2² = 100J
bicycle A has a greater K.E. because it has bigger mass and moves with faster velocity