Answer:
<h3>The answer is 336 kgm/s</h3>
Explanation:
The momentum of an object can be found by using the formula
<h3>momentum = mass × velocity</h3>
From the question
mass = 4 kg
velocity = 84 m/s
We have
momentum = 4 × 84
We have the final answer as
<h3>336 kgm/s</h3>
Hope this helps you
Answer:
Correct answer is A.
The higher the enzyme, the higher the Vmax
Explanation:
Although, in the absence of enzyme, the rate of a reaction(Vmax) increase linearly with substrate concentration. The reaction rate is given as dp/dt.
The rate of a reaction involving enzyme also increases.
At low enzyme concentrations or high substrate concentrations, all of the available enzyme active sites could be occupied with substrates. Therefore, increasing the substrate concentration further will not change the rate of diffusion. In other words, there is some maximum reaction rate (Vmax) when all enzyme active sites are occupied. The reaction rate will increase with increasing substrate concentration, but must asymptotically approach the saturation rate, Vmax. Vmax is directly proportional to the total enzyme concentration, E
The relation between temperature and pressure is called the "equation of state of the gas". or "Hydrostatic equilibrium in ordinary star". Take for example a balloon, it will have a larger spherical shape, if the pressure inside exerted by the gas on a wall of a balloon balance the inward force exerted by the outside atmospheric pressure. In a dying star which is being compressed by gravity, the gas is being squeezed so the molecules is moving rapidly, resulting to a very high temperature, and this provide a balance that counteract or balances the compressive force of gravity. The very high temperature inside the star is needed to balance the force of gravity, and it is provide by "nuclear fusion energy" or else the star would collapse under the force of gravity. Depending on the size or mass of the star, it will either become, a "neutron star" or a "black hole".
Wassily Kandinsky invented abstract geometry :) have a good week