Answer:
finding Cepheid variable and measuring their periods.
Explanation:
This method is called finding Cepheid variable and measuring their periods.
Cepheid variable is actually a type of star that has a radial pulsation having a varying brightness and diameter. This change in brightness is very well defined having a period and amplitude.
A potent clear link between the luminosity and pulsation period of a Cepheid variable developed Cepheids as an important determinants of cosmic criteria for scaling galactic and extra galactic distances. Henrietta Swan Leavitt revealed this robust feature of conventional Cepheid in 1908 after observing thousands of variable stars in the Magellanic Clouds. This in fact turn, by making comparisons its established luminosity to its measured brightness, allows one to evaluate the distance to the star.
Answer:
largest lead = 3 m
Explanation:
Basically, this problem is about what is the largest possible distance anchorman for team B can have over the anchorman for team A when the final leg started that anchorman for team A won the race. This show that anchorman for team A must have higher velocity than anchorman for team B to won the race as at the starting of final leg team B runner leads the team A runner.
So, first we need to calculate the velocities of both the anchorman
given data:
Distance = d = 100 m
Time arrival for A = 9.8 s
Time arrival for B = 10.1 s
Velocity of anchorman A = D / Time arrival for A
=100/ 9.8 = 10.2 m/s
Velocity of anchorman B = D / Time arrival for B
=100/10.1 = 9.9 m/s
As speed of anchorman A is greater than anchorman B. So, anchorman A complete the race first than anchorman B. So, anchorman B covered lower distance than anchorman A. So to calculate the covered distance during time 9.8 s for B runner, we use
d = vt
= 9.9 x 9.8 = 97 m
So, during the same time interval, anchorman A covered 100 m distance which is greater than anchorman B distance which is 97 m.
largest lead = 100 - 97 = 3 m
So if his lead no more than 3 m anchorman A win the race.
Answer:
The first is the electric field, which describes the force acting on a stationary charge and gives the component of the force that is independent of motion. The magnetic field, in contrast, describes the component of the force that is proportional to both the speed and direction of charged particles.
Answer:
bb kettle
Explanation:
it transfres electricsl to kinetic