Answer:
A salt
Explanation:
When an acid and a base are placed together, they react to neutralize the acid and base properties, producing a salt. The H(+) cation of the acid combines with the OH(-) anion of the base to form water. The compound formed by the cation of the base and the anion of the acid is called a salt
Answer: <em>Hopefully this helps! sorry if not. :))</em>
<em></em>
<em>Speed has a greater impact on mass because its increases in velocity have an exponentially greater impact on translational kinetic energy because kinetic energy is proportional to velocity squared. Doubling an object's mass would only double its kinetic energy, however doubling its momentum would quadruple its velocity.</em>
Answer:
The correct answer is because the molecular structure.
Explanation:
The difficulty of ammonia and methane to be represented on paper is due to the molecular structure. These compounds have a three-dimensional projection with defined angles. Ammonia presents angles of 109.5º between the atom of Nitrogen and those of Oxygen. The ammonia presents 107.8º between the oxygen atoms.
In the methane molecule, there is 109.5º between the hydrogen molecules and the carbon atom. This results in the need for a 3D representation of the molecule.
Have a nice day!
1. Find its coordination figure/coordination number of central atom (CF)
Ev = Vallence electron of central atom
Σe = electrons donated from substituents
Terminal O gives 0 electrons, hence Σe = 3 x 0
charge = charge of the compound
2. Find EP (electron pairs) and LP (lone pairs)
LP = CF - EP
3. Draw the skeleton with octet substituents (top right figure)
4. Find formal charge for each atoms (Qf)
5. Write formal charge near atom in skeleton
6. Enjoy
Answer:
Ag 0 is the reducing agent.
Explanation:
Reducing -> gaining electrons
Oxidizing -> losing electrons
Ag lost electrons (became more positive) since it went from a 0 charge to a +1 charge. Therefore it was oxidized. Ag+ is the oxidized product. Reactants that create an oxidized product are called reducing agents. This would make Ag 0 the reducing agent in this reaction.