Answer:
C. 17 grams.
Explanation:
∵ mass % = [mass of solute/mass of solution] x 100.
mass of solute (NaCl) = ??? g & mass of solution = 140.0 g.
<em>∴ mass of NaCl = (mass %)(mass of solution)/100 </em>= (12.0)(140.0)/100 = <em>16.80 g ≅ 17.0 g.</em>
The density would be the same for the whole bar as well as one half of the bar. Density is a identity I believe, by this I mean that it stays the same no matter how little or how much of the same substance you have. Since density = mass / volume, half the bar has half of the weight as well as half of the volume of the whole bar, making the density the same.
For example, a block weighs 10 grams and has a volume of 5 ml. the density would be d = 10/5 or, d = 2g/ml
Half of the block weighs 5 grams and has a volume of 2.5 ml. The density is d = 5/2.5, or, d = 2 g/ml.
See, although there are different amounts of the same substance, their density is the same.
Answer:
29.41% of Calcium and 47.04% of Oxygen
Explanation:
The percent composition of an atom in a molecule is defined as 100 times the ratio between the mass of the atom and the mass of the molecule.
The mass of the molecule of the problem (Ore) is 46.28g. That means the percent composition of Calcium is:
13.61g / 46.28g * 100 = 29.41% of Calcium
And percent composition of Oxygen is:
21.77g / 46.28g * 100 = 47.04% of Oxygen
Answer:
A 50-mL volumetric cylinder with 0.1-mL accuracy scale should be used for this purpose since three significant figures of accuracy are required.
Explanation:
Hello,
A 50-mL volumetric cylinder with 0.1-mL accuracy scale should be used for this purpose since three significant figures of accuracy are required.
Best regards.