Explanation:
The given reaction equation is as follows.
+ ___ 
As there is release of one hydrogen which shows that mass number has increase by 1 on the product side.
Therefore, particle
must be added in order to balance the given reaction equation.
Hence, the complete reaction equation will be as follows.

Answer:
Δx ≥ 1.22 *10^-10m
Explanation:
<u>Step 1:</u> Data given
The E. coli bacterial cell has a mass of 1.80 fg ( = 1.80 * 10^-15 grams = 1.80 * 10^-18 kg)
Velocity of v = 8.00 μm/s (= 8.00 * 10^-6 m/s)
Uncertainty in the velocity = 3.00 %
E. coli bacterial cells are around 1 μm = 10^−6 m in length
<u>Step 2:</u> Calculate uncertainty in velocity
Δv = 0.03 * 8*10^-6 m/s =2.4 * 10^-7 m/s
<u>Step 3:</u> Calculate the uncertainty of the position of the bacterium
According to Heisenberg uncertainty principle,
Δx *Δp ≥ h/4π
Δx *mΔv ≥ h/4π
with Δx = TO BE DETERMINED
with m = 1.8 *10^-18 kg
with Δv = 2.4*10^-7
with h = constant of planck = 6.626 *10^-34
Δx ≥ 6.626*10^-34 / (4π*(1.8*10^-18)(2.4*10^-7))
Δx ≥ 1.22 *10^-10m
Given that the gas inside the balloon is an ideal gas, then the ideal gas equation can be used to describe the system. I think the correct answer from the choices listed above is option B. If the balloon is heatedto a temperature of 15.5T while it is placed under a high pressure of 15.5P, then the volume of the balloon stays the same since the change in temperature corresponds to same degree of change with pressure.
If a sample o water is mixed with a surfactant, the most likely result is that the viscosity of the water will increase. This is because of the property of the surfactant which is generally viscous; and becomes more viscous when mixed with water.
Answer:
2,981g
Explanation:
Firstly, we need to find the number of moles of MgCl that we have by using the formula: mass = No. Moles x Molar Mass, which we can rearrange so that we are solving for no. moles:
No. Moles = mass / Molar Mass
We are given a mass of 621g, and we can calculate the molar mass of MgCl by adding the two molar masses together: 24.31+35.45 = 59.76
Now we can calculate number of moles by substituting these values into the formula:
n = 621 / 59.76
No. moles = 10.4
Now we can use the co-efficients in the formula to tell us how many moles of AgCl will be formed. The coefficient of MgCl is 1, and the coefficient of AgCl is 2. This means that every 1 mol of MgCl will form 2 moles of AgCl. So, to find the no. moles of AgCl, we multiply our no. moles by 2:
10.4 x 2 = 20.8 moles
Finally we convert this back into mass by multiplying the no. moles by the Molar mass of AgCl:
m = 20.8 x (107.87+35.45)
m = 2,981g