Jupiter. It states that the stronger the magnetic field, the larger the magnetosphere. Some 20,000 times stronger than Earth's magnetic field, Jupiter's magnetic field creates a magnetosphere so large it begins to avert the solar wind almost 3 million kilometers before it reaches Jupiter.
The initial force of motion and inward acting force
<span>the picture bellow gives you all the answers, this picture was given to my class by my science teacher a few years ago so it is accurate
</span>
<span />
Answer:
a)Counterclockwise
b)ω=2 rad/s
Explanation:
Given that
Object at = --2 m
r= - 2 m
Velocity pf object V = - 4 m/s
We know that

r= - 2 i m
V= - 4 j m/s
- 4 j= ω x (- 2 i)
ω should be in counter clockwise (k) to satisfy the above equation.
It means that the direction of object will in counter clockwise.
4 = ω x 2
ω=2 rad/s
So object velocity at 2 m will be 2 rad/s.
<span>320. seconds
The ideal gas law is
PV = nRT
where
P = pressure of the gas
V = volume of the gas
n = number of moles of the gas
R = the ideal gas constant
T = absolute temperature of the gas.
Since we're going to want the volume, solve for V
PV = nRT
V = nRT/P
755 mmHg converts to 100658.11 Pascals
25 C = 298.15 K
Let's calculate nT/P, then we'll multiply by R
1 mol * 298.15 K / 100658.11 Pa = 0.002962007 K mol/Pa
The value for R in the most convenient units is 8.3144598 m^3 Pa/(K mol), so
0.002962007 K mol/Pa * 8.3144598 m^3 Pa/(K mol) = 0.024627486 m^3
So 1 mole of air at the specified temperature and pressure has a volume of 24.627 liters. The rest of the problem is now trivial. Just divide by the rate of consumption, so
24.627 l / 0.0770 l/s = 319.8374798 s
Rounding the result to 3 significant figures gives 320. seconds.</span>