I do not know what point is you trying to find
Answer: 1.25
Step-by-step explanation:
Given: A college-entrance exam is designed so that scores are normally distributed with a mean
= 500 and a standard deviation
= 100.
A z-score measures how many standard deviations a given measurement deviates from the mean.
Let Y be a random variable that denotes the scores in the exam.
Formula for z-score = 
Z-score = 
⇒ Z-score = 
⇒Z-score =1.25
Therefore , the required z-score = 1.25
I'm sorry this is gauge is there anymore info
Answer: the statements and resons, from the given bench, that fill in the blank are shown in italic and bold in this table:
Statement Reason
1. K is the midpoint of segment JL Given
2. segment JK ≅ segment KL <em>Definition of midpoint</em>
3. <em>L is the midpoint of segment KM</em> Given
4. <em>segment KL ≅ segment LM</em> Definition of midpoint
5. segment JK ≅ segment LM Transitive Property of
Congruence
Explanation:
1. First blank: you must indicate the reason of the statement "segment JK ≅ segment KL". Since you it is given that K is the midpoint of segment JL, the statement follows from the very <em>Definition of midpoint</em>.
2. Second blank: you must add a given statement. The other given statement is <em>segment KL ≅ segment LM</em> .
3. Third blank: you must indicate the statement that corresponds to the definition of midpoint. That is <em>segment KL ≅ segment LM</em> .
4. Fourth and fith blanks: you must indicate the statement and reason necessary to conclude with the proof. Since, you have already proved that segment JK ≅ segment KL and segment KL ≅ segment LM it is by the transitive property of congruence that segment JK ≅ segment LM.
X²+y²-2y=7
using the formula that links Cartesian to Polar coordinates
x=rcosθ and y=r sin θ
substituting into our expression we get:
(r cos θ)²+(r sin θ)²-2rsinθ=7
expanding the brackets we obtain:
r²cos²θ+r²sin²θ=7+2rsinθ
r²(cos²θ+sin²θ)=7+2rsinθ
using trigonometric identity:
cos²θ+sin²θ=1
thus
r²=2rsinθ+7
Answer: r²=2rsinθ+7