Answer:
0.26 ml
Explanation:
d = m/V
=> V = m/d = 15.2/58 = 0.26 ml
Answer:
1. Alkali metals (group 1)
2. halogens (Group 17)
3. noble gasses (group 18)
Explanation:
1. alkali metals only have one valence electron meaning that they really want to lose that one valence electron to get a full octet.
2. halogens have 7 valence electrons meaning that they just need to gain 1 to get a full octet.
3. Nobel gasses already have a full octet meaning that they don't want to react. (atoms only react to get a full octet)
I hope this helps. Let me know if anything is unclear.
Answer:
Molarity of
solution is 0.612 mol/L
Explanation:
Number of moles of a substance = (mass of substance)/(molar mass of the substance)
Molar mass of
= 214 g/mol
So, 562 g of
=
moles of
= 2.63 moles of 
Molarity of a solution = (number of moles of solute in solution)/(total volume of solution in liter)
Here solute is
and solvent is water
Total volume of solution is 4.30 L
So, molarity of
solution =
= 0.612 mol/L
Answer:
C. Chain Reaction
Explanation:
You get different elements from just one by a single reaction.
Answer:
freezing point (°C) of the solution = - 3.34° C
Explanation:
From the given information:
The freezing point (°C) of a solution can be prepared by using the formula:

where;
i = vant Hoff factor
the vant Hoff factor is the totality of the number of ions in the solution
Since there are 1 calcium ion and 2 nitrate ions present in Ca(NO3)2, the vant Hoff factor = 3
= 1.86 °C/m
m = molality of the solution and it can be determined by using the formula

which can now be re-written as :



molality = 0.599 m
∴
The freezing point (°C) of a solution can be prepared by using the formula:



the freezing point of water - freezing point of the solution
3.34° C = 0° C - freezing point of the solution
freezing point (°C) of the solution = 0° C - 3.34° C
freezing point (°C) of the solution = - 3.34° C