We are given that the balanced chemical reaction is:
cacl2⋅2h2o(aq) +
k2c2o4⋅h2o(aq) --->
cac2o4⋅h2o(s) +
2kcl(aq) + 2h2o(l)
We known that
the product was oven dried, therefore the mass of 0.333 g pertains only to that
of the substance cac2o4⋅h2o(s). So what we will do first is to convert this
into moles by dividing the mass with the molar mass. The molar mass of cac2o4⋅h2o(s) is
molar mass of cac2o4 plus the
molar mass of h2o.
molar mass cac2o4⋅h2o(s) = 128.10
+ 18 = 146.10 g /mole
moles cac2o4⋅h2o(s) =
0.333 / 146.10 = 2.28 x 10^-3 moles
Looking at
the balanced chemical reaction, the ratio of cac2o4⋅h2o(s) and k2c2o4⋅h2o(aq) is
1:1, therefore:
moles k2c2o4⋅h2o(aq) = 2.28
x 10^-3 moles
Converting
this to mass:
mass k2c2o4⋅h2o(aq) = 2.28
x 10^-3 moles (184.24 g /mol) = 0.419931006 g
Therefore:
The mass of k2c2o4⋅<span>h2o(aq) in
the salt mixture is about 0.420 g</span>
Rate, fast :Maybe these are the answers.
1-energy
2- force
3- force
4- force
5- energy
6- energy
Major Plates
Africa Plate
Antarctic Plate
Indo-Australian Plate
Australian Plate
Eurasian Plate
North American Plate
South American Plate
<span>Pacific Plate
Minor Plates
There are dozens of smaller plates, the seven largest of which are:
</span>Arabian Plate
Caribbean Plate
Juan de Fuca Plate
Cocos Plate
Nazca Plate
Philippine Sea Plate
<span>Scotia Plate</span>
Answer is: (4) emits energy as it moves to a lower energy state.
Atom emits a characteristic set of discrete wavelengths, according to its electronic energy levels.
Emission spectrum of a chemical element is the spectrum of frequencies emitted due to an atom making a transition from a high energy state to a lower energy state.
Each transition has a specific energy difference.
Each element's emission spectrum is unique.