A fusion reaction takes place between carbon and another element. Neutrons are released, and a different element is formed. The different element is Lighter than helium.
The concentration of [H3O⁺]=2.86 x 10⁻⁶ M
<h3>Further explanation</h3>
In general, the weak acid ionization reaction
HA (aq) ---> H⁺ (aq) + A⁻ (aq)
Ka's value
![\large {\boxed {\bold {Ka \: = \: \frac {[H ^ +] [A ^ -]} {[HA]}}}}](https://tex.z-dn.net/?f=%5Clarge%20%7B%5Cboxed%20%7B%5Cbold%20%7BKa%20%5C%3A%20%3D%20%5C%3A%20%5Cfrac%20%7B%5BH%20%5E%20%2B%5D%20%5BA%20%5E%20-%5D%7D%20%7B%5BHA%5D%7D%7D%7D%7D)
Reaction
HC₂H₃O₂ (aq) + H₂O (l) ⇔ (aq) + H₃O⁺ (aq) Ka = 1.8 x 10⁻⁵
![\tt Ka=\dfrac{[C_2H_3O^{2-}[H_3O^+]]}{[HC_2H_3O_2]}}\\\\1.8\times 10^{-5}=\dfrac{0.22\times [H_3O^+]}{0.035}](https://tex.z-dn.net/?f=%5Ctt%20Ka%3D%5Cdfrac%7B%5BC_2H_3O%5E%7B2-%7D%5BH_3O%5E%2B%5D%5D%7D%7B%5BHC_2H_3O_2%5D%7D%7D%5C%5C%5C%5C1.8%5Ctimes%2010%5E%7B-5%7D%3D%5Cdfrac%7B0.22%5Ctimes%20%5BH_3O%5E%2B%5D%7D%7B0.035%7D)
[H₃O⁺]=2.86 x 10⁻⁶ M
Answer:
E - Be and O
A - Mg and N
E - Li and Br
F - Ba and Cl
B - Rb and O
Explanation:
Be and O
Be is a metal that loses 2 e⁻ to form Be²⁺ and O is a nonmetal that gains 2 e⁻ to form O²⁻. For the ionic compound to be neutral, it must have the form BeO (E-MX).
Mg and N
Mg is a metal that loses 2 e⁻ to form Mg²⁺ and N is a nonmetal that gains 3 e⁻ to form O³⁻. For the ionic compound to be neutral, it must have the form Mg₃N₂ (A-M₃X₂).
Li and Br
Li is a metal that loses 1 e⁻ to form Li⁺ and Br is a nonmetal that gains 1 e⁻ to form Br⁻. For the ionic compound to be neutral, it must have the form LiBr (E-MX).
Ba and Cl
Ba is a metal that loses 2 e⁻ to form Ba²⁺ and Cl is a nonmetal that gains 1 e⁻ to form Cl⁻. For the ionic compound to be neutral, it must have the form BaCl₂ (F-MX₂).
Rb and O
Rb is a metal that loses 1 e⁻ to form Rb⁺ and O is a nonmetal that gains 2 e⁻ to form O²⁻. For the ionic compound to be neutral, it must have the form Rb₂O (B-M₂X).
Answer:
K3PO4
Explanation:
Recall that colligative properties depends on the number of particles present. The greater the number of particles present, the greater the degree of colligative properties of the solution. Let us look at each option individually;
SrCr2O7-------> Sr^2+ + Cr2O7^2- ( 2 particles)
C4H11N (not ionic in nature hence it can not dissociate into ions)
K3PO4-------> 3K^+ + PO4^3- (4 particles)
Rb2CO3-------> 2Rb^+ + CO3^2- (3 particles)
Hence K3PO4 has the greatest number of particles and will display the greatest colligative effect.
Answer:
The answer is
<h2>0.052 g/cm³</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 2.5 g
volume = 48 cm³
The density is

We have the final answer as
<h3>0.052 g/cm³</h3>
Hope this helps you