Answer:
A) It shows how electrons are distributed in the Shells of an Iron atom.
Explanation: Took the test on Edge
Both of them have high electronegativity. Hence they both tend to gain electrons to gain stability.
<h3>
<u>Answer;</u></h3>
= 930.23 mL
<h3><u>Explanation</u>;</h3>
Using the combined gas law;
P1V1/T1 = P2V2/T2
Where; P1 = 600 kPa, V1 = 800 mL, and T1 = -25 +273 = 258 K, and
V2= ?, P2 = 1000 kPa, and T2 = 227 +273 = 500 K
Thus;
V2 = P1V1T2/T1P2
= (600 ×800 ×500) / (258 × 1000)
= 930.23 mL
Answer:
1) Greater than zero, and equal to the rate of the reverse reaction
2) Greater than zero, but less than the rate of the reverse reaction
3) Greater than zero, and equal to the rate of the reverse reaction
Explanation:
A reaction system is said to be in equilibrium when the rate of forward reaction is equal to the rate of reverse reaction.
Before we remove HCH3CO2 from the system, the system was in equilibrium. Recall that when a system is in equilibrium, the rate of forward reaction is equal to the rate of reverse reaction. The rate of reaction is greater than zero because products are being formed as the reactants interact with each other.
When HCH3CO2 is removed from the system, the equilibrium position shifts towards the left hand side hence the rate of reverse reaction is greater than the rate of forward reaction.
When the system attains equilibrium again, the rates of forward and reverse reaction become equal.